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We characterise the asymptotic upper bounds on the use of Chaitin’s ! in oracle 
computations of halting probabilities (i.e. c.e. reals). We show that the following two 
conditions are equivalent for any computable function h such that h(n) − n is non-
decreasing: (1) h(n) − n is an information content measure, i.e. the series ∑

n 2n−h(n)

converges, (2) for every c.e. real α there exists a Turing functional via which ! computes 
α with use bounded by h. We also give a similar characterisation with respect to 
computations of c.e. sets from !, by showing that the following are equivalent for any 
computable non-decreasing function g: (1) g is an information-content measure, (2) for 
every c.e. set A, ! computes A with use bounded by g. Further results and some 
connections with Solovay functions (studied by a number of authors [38,3,26,11]) are given.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Chaitin’s constant is the most well-known algorithmically random number. It is the probability that a universal prefix-free 
machine U halts, when a random sequence of 0s and 1s is fed into the input tape. In symbols:

!U =
∑

U (σ )↓
2−|σ |.

While !U clearly depends on the choice of underlying universal prefix-free machine U , all versions of it are quite similar 
with respect to the properties we shall be concerned with here. For this reason, when the choice of underlying machine U
is irrelevant, we shall simply refer to !U as an !-number, or denote it by !. The choice of U is essentially equivalent to 
the choice of a programming language. Although ! is incomputable, it is the limit of an increasing computable sequence of 
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rational numbers. Such reals are known as computably enumerable reals (c.e. reals, a more general class than the c.e. sets), 
and can be viewed as the halting probabilities of (not necessarily universal) prefix-free machines.

The binary expansion of ! is an algorithmically unpredictable sequence of 0s and 1s, which packs a lot of useful infor-
mation into rather short initial segments. In the words of Charles H. Bennett (also quoted by Martin Gardner in [25]),

[Chaitin’s constant] embodies an enormous amount of wisdom in a very small space . . . inasmuch as its first few thou-
sands digits, which could be written on a small piece of paper, contain the answers to more mathematical questions 
than could be written down in the entire universe. . .

[Charles H. Bennett [5]]

Being of the same Turing degree, ! may be seen as containing the same information as the halting problem, but it 
contains this same information in a much more compact way. It is Turing complete, so it computes all c.e. sets and all c.e. 
reals. As one might expect, given these remarkable properties, it is very hard to obtain initial segments of !. The modulus of 
convergence in any monotone computable approximation to !, for example, dominates all computable functions. Chaitin’s 
incompleteness theorem [14] (also independently proved by Muchnik) tells us that any computably axiomatizable theory 
interpreting Peano arithmetic can determine the value of only finitely many bits of !. Solovay [39] exhibited a specific 
universal prefix-free machine U with respect to which ZFC cannot determine any bit of !U . Despite these extreme negative 
results, Calude, Dinneen and Shu [13,12] computed a finite number of bits for certain versions of ! (i.e. corresponding to 
certain canonical enumerations of the prefix-free Turing machines).

Given the Turing completeness of ! and the extreme difficulty of obtaining the bits of its binary expansion, it is interest-
ing to consider the lengths of the initial segments of ! that are used in oracle computations of c.e. sets and c.e. reals. How 
many bits of !, for example, are needed in order to compute n bits of a given c.e. real or a given c.e. set? The goal of this 
paper is to answer these questions, as well raising and discussing a number of related issues that point to an interesting 
research direction, with clear connections to contemporary research in algorithmic randomness.

1.1. Our main results, in context

We review some standard notation and terminology. The positions in the binary expansion of a real (to the right of the 
decimal point) are numbered 1, 2, 3, . . . from left to right. Given a real α, we let α(t) denote the value of the digit of α
at position t + 1 of its binary expansion. We identify infinite binary sequences with binary expansions of reals in [0, 1]
and with subsets of the natural numbers N. Subsets of N are denoted by upper-case latin letters while lower-case Greek 
letters are used for the reals in [0, 1] (the fact that dyadic rationals have two expansions will not be an issue here). The 
use-function corresponding to an oracle computation of a set A, is the function whose value on argument n is the length 
of the initial segment of the oracle tape that is read during the computation of the first n bits of A. Given A ⊆ N, we let 
A !n denote the initial segment of the characteristic function of A of length n. The n-bit prefix of a real number α is also 
denoted by α !n . Some background material on algorithmic randomness is given in Section 1.3.

Definition 1.1 (Use of computations). Given a function h, we say that a set A is computable from a set B with use bounded 
by h if there exists an oracle Turing machine which, given any n and B !h(n) in the oracle tape, outputs the first n bits of A.

Use functions are typically assumed to be nondecreasing. We say that a function f : N → N is right-c.e. if there is a 
computable function f0 : N × N → N which is non-increasing in the second argument and such that f (n) = lims f0(n, s) for 
each n. Our results connect use-functions with information content measures, as these were defined by Chaitin [15]. These are 
right-c.e. functions f with the property that 

∑
i 2− f (i) converges. This notion is fundamental in the theory of algorithmic 

randomness, and is the same as the c.e. discrete semi-measures of Levin [30], which were also used in Solomonoff [37]. For 
example, prefix-free complexity can be characterised as a minimal information content measure (by [15,30]). Throughout 
this paper the reader may consider log n as a typical example of a computable non-decreasing function f such that 

∑
i 2− f (i)

diverges, and 2 log n or (ϵ + 1) log n for any ϵ > 0 as an example of a function f such that 
∑

i 2− f (i) converges.
Our results address computations of (a) c.e. sets and (b) c.e. reals. In a certain sense c.e. reals can be seen as compressed 

versions of c.e. sets. Indeed, as we explain at the beginning of Section 2, a c.e. real α can be coded into a c.e. set Xα in 
such a way that Xα !2n can compute α !n and α !n can compute Xα !2n . So it is not surprising that our results for the 
two cases are analogous. Computations of c.e. sets (from !) correspond to use-functions g which are information content 
measures, while computations of c.e. reals correspond to use-functions of the form n + g(n), where g is an information 
content measure.

Theorem 1.2 (Computing c.e. reals). Let h be computable and such that h(n) − n is non-decreasing.

(1) If 
∑

n 2n−h(n) converges, then for any !-number ! and any c.e. real α, α can be computed from ! with use bounded by h.
(2) If 

∑
n 2n−h(n) diverges then no !-number can compute all c.e. reals with use h + O (1). In fact, in this case there exist two c.e. reals 

such that no c.e. real can compute both of them with use h + O (1).
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A considerable amount of work has been devoted to the study of computations with use-function n '→ n + c for 
some constant c. Note that these are a specific case of the second clause of Theorem 1.2. These types of reductions are 
called computably-Lipschitz, and were introduced by Downey, Hirschfeldt and Laforte in [20] and have been studied in 
[23,2,7,9,8,10] as well as more recently in [4,18,1,31]. The second clause of Theorem 1.2 generalises the result of Yu and 
Ding in [23] which assumes that h(n) = n + O (1). It would be an interesting project to generalise some of the work that has 
been done for computably-Lipschitz reductions to Turing-reductions with computable use h such that 

∑
i 2n−h(n) diverges. 

We believe that in many cases this is possible. The second clause of Theorem 1.2 can be viewed as an example of this larger 
project.

If, as we discussed earlier, c.e. reals are just compressed versions of c.e. sets, then what are the c.e. sets that correspond 
to ! numbers? In Section 1.2 (with the proofs deferred to Section 2) we discuss this duality and point out that the linearly-
complete c.e. sets could be seen as the analogues of ! in the c.e. sets. Recall that the linearly complete c.e. sets are those 
c.e. sets that compute all c.e. sets with use O (n).1 A natural example of a linearly-complete set is the set of non-random 
strings, {σ | C(σ ) < |σ |} (where C(σ ) denotes the plain Kolmogorov complexity of the string σ ) which was introduced by 
Kolmogorov [27]. This latter set can be viewed as a set of numbers with respect to the bijection that corresponds to the 
usual ordering of strings, first by length and then lexicographically. In [6] it was shown that a c.e. set A is linearly-complete 
if and only if C(A !n) ≥ log n − c for some constant c and all n.

Theorem 1.3 (Computing c.e. sets). Let g be a computable function.

(1) If 
∑

n 2−g(n) converges, then every c.e. set is computable from any !-number with use g.
(2) If 

∑
n 2−g(n) diverges and g is nondecreasing, then no !-number can compute all c.e. sets with use g. In fact, in this case, no 

linearly complete c.e. set can be computed by any c.e. real with use g.

Theorem 1.3 is an analogue of Theorem 1.2 for computations of c.e. sets from !. Beyond the apparent analogy, the two 
theorems are significantly connected. Theorem 1.3 will be used in the proof of Theorem 1.2, and this justifies our approach 
of studying c.e. reals as compressed versions of c.e. sets.

A natural class of a linearly complete c.e. sets are the halting sets, with respect to a Kolmogorov numbering. A numbering 
(Me) of plain Turing machines is a Kolmogorov numbering if there exists a computable function f and a machine U such 
that U ( f (e, n)) ≃ Me(n) for each e, n (where ‘≃’ means that either both sides are defined and are equal, or both sides are 
undefined) and for each e the function n '→ f (e, n) is O (n). Kolmogorov numberings, in a sense, correspond to optimal 
simulations of Turing machines and are the basis for the theory of plain Kolmogorov complexity, and have been studied in 
[33,36].

The following result can be viewed in the context of Solovay functions, which stem from Solovay’s work [38] on 
!-numbers and were extensively studied by Bienvenu and Downey [3], Hölzl, Kräling and Merkle [26], and Bienvenu, Merkle 
and Nies [11]. A Solovay function is a computable information content measure g such that 

∑
i 2−g(i) is 1-random. As we 

discussed above, every information content measure is an upper bound on prefix-free Kolmogorov complexity (modulo an 
additive constant). By [11], Solovay functions g are exactly the computable tight upper bounds of the prefix-free complex-
ity function n '→ K (n), i.e. a computable function g is a Solovay function if and only if K (n) ≤ g(n) + O (1) for all n and 
g(n) ≤ K (n) + O (1) for infinitely many n.

Theorem 1.4 (Solovay functions as tight upper bounds on oracle use). Let g be a nondecreasing computable function such that ∑
n 2−g(n) converges to a 1-random real. Then a c.e. real is 1-random if and only if it computes the halting problem with respect 

to a Kolmogorov numbering with use g.

This result is another way to see the halting sets with respect to Kolmogorov numberings as analogues of Chaitin’s !
in the c.e. sets. Moreover, it gives a characterisation of monotone Solovay functions in terms of the oracle-use for certain 
computations between c.e. sets and c.e. reals.

Finally we obtain a gap theorem characterising the array computable degrees, in the spirit of Kummer [29]. Recall from 
[22] that a Turing degree a is array computable if there function f which is computable from the halting problem with a 
computable upper bound on the use of the oracle, and which dominates every function g which is computable in a. Array 
computable degrees play a significant role in classical computability theory. Kummer showed that they also relate to initial 
segment complexity. He showed that the initial segment plain complexity C(A !n) of every c.e. set A in an array computable 
degree is bounded above (modulo an additive constant) by any monotone function f such that limn( f (n) − log n) = ∞. On 
the other hand, he also showed that every array noncomputable degree contains a c.e. set A such that C(A !n) is not 
bounded above by any function f such that limn(2 log n − f (n)) = ∞. This is known as Kummer’s gap theorem (see [19, 
Section 16.1]) since it characterises array computability of the c.e. degrees in terms of a logarithmic gap on the initial 

1 We note that this is different than what was defined to be linear reducibility in [10], which was later more commonly known as computably Lipschitz 
reducibility.
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segment plain complexity. The following is another logarithmic gap theorem characterising array computability in the c.e. 
degrees, but this time the gap refers to the oracle use in computations from Chaitin’s omega.

Theorem 1.5. Let a be a c.e. Turing degree and let ! be (an instance of) Chaitin’s halting probability.

(1) If a is array computable, then every real in a is computable from ! with identity use.
(2) Otherwise there exists a c.e. real in a which is not computable from ! with use n + log n.

This result is largely a corollary of the work in [4, Sections 4.2, 4.3] applied to the construction in the proof of Theo-
rem 1.2 (1).

1.2. Omega numbers and completeness

This paper concerns certain aspects of completeness of !, so it seems appropriate to discuss the completeness of !
a little more generally. The fact that ! computes all c.e. reals is referred to as the Turing-completeness of ! (with respect to 
c.e. reals), and has been known since ! was first defined. Calude and Nies observed in [17] that there is a computable bound 
on the oracle use in computations of c.e. reals and c.e. sets from !. The results of Section 1.1 give a sharp characterisation 
of these computable bounds. It is a reasonable question as to whether !-numbers can be characterised as the complete 
c.e. reals with respect to Turing reductions with appropriately bounded use. In terms of the strong reducibilities of classical 
computability theory, this question has a negative answer. Figueira, Stephan, and Wu showed in [24], for example, that there 
are two !-numbers which do not have the same truth-table degree. Stephan (see [4, Section 6] for a proof) showed that 
given any !-number, there is another !-number which is not computable from the first with use n + O (1).

Putting this question aside, there are a number of characterisations of the !-numbers as the complete elements of the 
set of c.e. reals with respect to certain (weak) reducibilities relating to algorithmic randomness. Downey, Hirschfeldt and 
Laforte studied and compared these and other reducibilities in [20], and a good presentation of this study can also be found 
in the monograph of Downey and Hirschfeldt [19, Chapter 9]. One of these reducibilities that pertains to the following 
discussion is the rK reducibility, denoted by A ≤rK B which is the relation that K (A !n | B !n) = O (1) for all n. We note 
that by Downey, Hirschfeldt and Laforte [20], this relation implies that A is computable in B , in the sense of Turing oracle 
computability. The following fact highlights the correspondence between !-numbers and linearly complete c.e. sets. Here 
K (! !n | H !g(n)) denotes the prefix-free complexity of ! !n relative to H !g(n) , and K (! !n | H !g(n)) = O (1) can be seen 
as a nonuniform computation of ! from H (see Section 1.3 for definitions relating to complexity).

Theorem 1.6. Consider a 1-random c.e. real !, a c.e. set H, a computable function g and a right-c.e. function f such that 
∑

i 2− f (i) is 
finite.

(i) If K (! !n | H !g(n)) = O (1) then 2n = O (g).
(ii) If g = O

(
2n

)
and K (! !n+ f (n) | H !g(n)) = O (1) then H is linearly-complete.

(iii) If g = O (n) and K (! ! f (n) | H !g(n)) = O (1) then H is linearly-complete.
(iv) If H is linearly-complete then it computes ! (and any c.e. real) with use 2n+O(1) .

In order to understand this fact better, note that if ! is computed by a c.e. set H with computable use h, then we 
have K (! !n | H !h(n)) = O (1) for all n. So the first clause of Theorem 1.6 says that the tightest use in a computation 
of ! from a c.e. set is exponential, even when the computation is done non-uniformly. The fourth clause asserts that the 
linearly-complete c.e. sets achieve this lower bound on the use in computations of !. In this sense, they can be viewed 
as analogues of !. There are more facts supporting this suggestion. In [6], for example, it was shown that a c.e. set H is 
linearly complete if and only if K (W !n | H !n) = O (1) for all n and all c.e. sets W . By the basic properties of Kolmogorov 
complexity, prefix-free complexity in the previous statement and in Theorem 1.6 can be replaced by plain Kolmogorov 
complexity (e.g. see [20]).

It is also instructive to compare clauses (ii) and (iii) of Theorem 1.6 with an older result of Solovay. For each n let Dn be 
the set of strings of length at most n, in the domain of the universal prefix-free machine. Solovay [38] (see [19, Section 3.13]) 
showed that the cardinality of Dn is proportional to 2n−K (n) , that K (! !n | Dn+K (n)) = O (1) and that K (Dn | ! !n) = O (1).

We conclude this section with a brief discussion of some results from Tadaki [40] which came to our attention only 
recently. Tadaki’s results are incomparable with those presented here, but relate to the results from this paper concerning 
reductions between ! and c.e. sets (rather than c.e. reals). He considered the problem of how many bits of ! are needed 
in order to compute the domain of the universal prefix-free machine U up to the strings of length n; and vice-versa, what 
is the least number m such that, in general, we can compute the first n bits of ! from the domain of U restricted to the 
strings of length at most m. Tadaki showed that, if we restrict the question to computable use-functions,

(a) the answer to the first question is given by the computable functions of the type n − f (n) such that 
∑

n 2− f (n) is finite.
(b) the answer to the second question is given by the computable functions of the type n + f (n) such that 

∑
n 2− f (n) is 

finite.
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These optimal results are quite pleasing, and were subsequently used by Tadaki [41] in order to obtain a statistical mechanics 
interpretation of algorithmic information theory, which was further developed in [42,43]. The main difference here is that 
the c.e. sets considered by Tadaki are the domains of universal prefix-free machines, and these are not linearly-complete 
(a fact which is not hard to verify).

1.3. Preliminaries

We assume the reader is familiar with the basic concepts of Kolmogorov complexity and computability theory. We use 
C(σ ) and K (σ ) to denote the plain and prefix-free Kolmogorov complexity of a string σ respectively. Moreover we use 
C(σ | ρ), K (σ | ρ) to denote the relative plain and prefix-free complexities of σ with respect to ρ respectively. Recall that 
A is 1-random if there exists a constant c such that K (A !n) ≥ n − c for all n. The cumulative work of Solovay [38], Calude, 
Hertling, Khoussainov and Wang [16] and Kučera and Slaman [28] has shown that the 1-random c.e. reals are exactly the 
halting probabilities of (optimal) universal machines. Most of this work revolves around a reducibility between c.e. reals that 
was introduced in [38]. We say that a c.e. real α is Solovay reducible to c.e. real β if there are nondecreasing computable 
rational approximations (αs), (βs) to α, β respectively, and a constant c such that α − αs ≤ c · (β − βs) for all s. Downey, 
Hirschfeldt and Nies [21] showed that

α is Solovay reducible to β iff there are nondecreasing computable rational approximations
(αs), (βs) to α,β respectively, and a constant c such that αs+1 − αs ≤ c · (βs+1 − βs) for all s.

(1.3.1)

Moreover it follows from [38,16,28] that the 1-random c.e. reals are exactly the c.e. reals that are complete (i.e. they are 
above all other c.e. reals) with respect to Solovay reducibility. In particular, if α is a 1-random c.e. real which is Solovay 
reducible to another c.e. real β , then β is also 1-random. We use these facts in the proof of Theorem 1.3 in Section 2.3. 
Without loss of generality, all c.e. reals considered in this paper belong to [0, 1]. The following convergence test will be 
used throughout this paper.

Lemma 1.7 (Condensation). If f is a nonincreasing sequence of positive reals then the series 
∑

i f (i) converges if and only if the series ∑
i

(
2i · f (2i)

)
converges. Moreover, if f is computable and the two sums converge, the first sum is 1-random if and only if the second 

sum is 1-random.

Proof. The first part is a standard series convergence test known as the Cauchy condensation test. Its proof usually goes 
along the lines of Oresme’s proof of the divergence of the harmonic series which shows that

∞∑

i=2t

f (i) ≤
∞∑

i=t

(
2i · f (2i)

)
= 2 ·

∞∑

i=t

(
2i−1 · f (2i)

)
≤ 2 ·

∞∑

i=2t−1

f (i) for all t ∈ N+.

The second part of the lemma follows from the above bounds, which show that the two sums are c.e. reals, each one 
Solovay reducible to the other. So one is 1-random if and only if the other is. ✷

Algorithmic randomness for reals was originally defined in terms of effective statistical tests by Martin-Löf in [34]. We 
assume that the reader is familiar with this classical definition. Another kind of test that can be used for the definition of 
1-randomness is the Solovay test. A Solovay test is a uniform sequence (Ii ) of '0

1 classes (often viewed as a uniformly c.e. 
sequence of sets of binary strings) such that the sum of the measures of the sets Ii is finite. We say that a real passes a 
Solovay test (Ii) if there are only finitely many indices i such that Ii contains a prefix of X . Solovay [38] showed that a real 
is 1-random if and only if it passes all Solovay tests.

Some of the following proofs involve the construction of prefix-free machines. There are certain notions and tools as-
sociated with such constructions which are standard in the literature, and which we briefly review now. The weight of a 
prefix-free set S of strings is defined to be the sum 

∑
σ∈S 2−|σ | . The weight of a prefix-free machine M is defined to be 

the weight of its domain. Prefix-free machines are most often built in terms of request sets. A request set L is a set of pairs 
⟨ρ, ℓ⟩ where ρ is a string and ℓ is a positive integer. A ‘request’ ⟨ρ, ℓ⟩ represents the intention of describing ρ with a string 
of length ℓ. We define the weight of the request ⟨ρ, ℓ⟩ to be 2−ℓ . We say that L is a bounded request set if the sum of the 
weights of the requests in L is less than 1. The Kraft–Chaitin theorem (see e.g. [19, Section 2.6]) says that for every bounded 
request set L which is c.e., there exists a prefix-free machine M with the property that for each ⟨ρ, ℓ⟩ ∈ L there exists a 
string τ of length ℓ such that M(τ ) = ρ . So the dynamic construction of a prefix-free machine can be reduced to a mere 
description of a corresponding c.e. bounded request set.

For more background in algorithmic information theory and computability theory we refer to the standard monographs 
[32,19,35]. Since we have included a number of citations to the unpublished manuscript of Solovay [38], we note that every 
result in this manuscript has been included, with a proof, in the monograph by Downey and Hirschfeldt [19].
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2. Omega and the computably enumerable sets

We start with the proof of Theorem 1.6 and continue with the proof of Theorem 1.3. The proof of the last clause 
of Theorem 1.6 in Section 2.2 describes a compact coding of a c.e. real into a c.e. set, which will also be used in later 
arguments in this paper.

2.1. Proof of Theorem 1.6, clauses (i) and (ii)

Recall the following theorem.

Theorem 1.6 (Clauses (i) and (ii)). Consider a 1-random c.e. real !, a c.e. set H, a computable function g and a right-c.e. function f
such that 

∑
i 2− f (i) is finite.

(i) If K (! !n | H !g(n)) = O (1) then 2n = O (g).
(ii) If g = O

(
2n

)
and K (! !n+ f (n) | H !g(n)) = O (1) then H is linearly-complete.

For the first clause, it suffices to show that for each c.e. real α, each c.e. set H and each computable function g:

if K (α !n | H !g(n)) = O (1) and 2n ≠ O (g) then α is not 1-random.

Assuming the above properties regarding H , α and g , we construct a Martin-Löf test (V i) such that α ∈ ∩i V i . Let d be 
a constant such that K (α !n | H !g(n)) < d for all n. Since 2n ≠ O (g), for each constant c there exists some n such that 
g(n) < 2n−c . Let (ni) be an increasing sequence with g(ni) < 2ni−i−d for each i. We describe a construction enumerating the 
sets Vk . We say that Vk requires attention at stage s + 1 if Ks+1(αs+1 !nk | Hs+1 !g(nk)) < d and either Vk[s] is empty or the 
last string enumerated into Vk is not a prefix of αs+1. At each stage s +1 we pick the least k such that Vk requires attention 
and enumerate αs+1 !nk into Vk . In order to see that (V i) is a Martin-Löf test, note that each time we enumerate into Vk , 
we are guaranteed a change in α !nk . Moreover, after at most 2d such consecutive enumerations, there must be a change 
in H !g(nk) . This is true, because after each such enumeration, Vk can only require attention if the underlying universal 
machine issues a new description of α !nk relative to H !g(nk) , of length less than d; moreover the underlying machine can 
only issue at most 2d such descriptions as long as the approximation to H !g(nk) does not change. Since g(nk) < 2nk−k−d and 
H is a c.e. set, there can be at most 2nk−k−d changes in H !g(nk) . It follows that there can be at most 2d · 2nk−k−d = 2nk−k

many enumerations into Vk , the last enumeration into this set being a prefix of α. Since each string in Vk has length nk , 
the measure of Vk is at most 2−k . So (Vk) is a Martin-Löf test with α ∈ ∩i V i , demonstrating that α is not 1-random.

For the second clause, let W be a c.e. set and assume the hypothesis of the second clause of the theorem. Since g =
O

(
2n

)
it suffices to show that for all but finitely many k, and for all i < 2k we can compute W (2k + i) uniformly from 

H !g(k) . Let c be a constant such that K (! ! f (k)+k | H !g(k)) < c for all k. We enumerate a Solovay test (Ik) as follows. We 
define the sets Ik(i) for each k ∈ N and i < 2k , and for each k we let Ik be the union of all Ik(i), i < 2k . In what follows, 
when we write !s ! f (k)+k , it is to be understood that the value f (k) referred to, is in fact the approximation to f (k) at 
stage s. At any stage s of the construction, for each k and each i < 2k , let mk(i) be the first stage ≤ s at which a string was 
enumerated into Ik(i) if such a stage exists, and let mk(i) be undefined otherwise. We say that Ik(i) requires attention at 
stage s if i < 2k , 2k + i ∈ W s , Ks(!s ! f (k)+k | Hs !g(k)) < c and the following two conditions hold:

• Hs !g(k)= Hmk(i) !g(k) or mk(i) is undefined;
• Ik = ∅ or the last string enumerated into Ik is not a prefix of !s .

We say that Ik requires attention at stage s if Ik(i) requires attention at stage s for some i < 2k .
At stage s + 1 let k be the least number such that Ik requires attention. Let i be the least number which is less than 2k

and such that Ik(i) requires attention, and enumerate !s+1 !k+ f (k) into Ik(i) (or do nothing if no Ik requires attention). This 
concludes the enumeration of (Ik).

First we show that (Ik) is a Solovay test. Fix k. If s0 < s1 are two stages at which enumerations are made into Ik , we 
have that !s0 !k+ f (k)≠ !s1 !k+ f (k) (if the approximation to f changes, then these are distinct strings). Now let i < 2k . If 
s0 < s1 are two stages at which enumerations into Ik(i) are made then Ks0 (!s0 !k+ f (k) | Hs0 !g(k)) < c and Ks1 (!s1 !k+ f (k)

| Hs0 !g(k)) < c. So for each new enumeration into Ik(i), we have an additional description in the universal machine with 
oracle Hmk(i) !g(k) (where mk(i) is the first stage where an enumeration occurred in Ik(i)) of length less than c. Since there 
are at most 2c such descriptions, for each k and i < 2k there can be at most 2c enumerations into Ik(i). So the measure of 
Ik(i) is at most 2c−k− f (k) . Hence the measure of Ik is at most 2c− f (k) . From our hypothesis concerning f , it follows that (Ik)
is a Solovay test.

Now we show that W is linearly reducible to H . Since g = O
(
2n

)
, it suffices to show that for all but finitely many k, if 

i < 2k and 2k + i is enumerated into W at some stage s0, then there exists a stage s1 > s0 such that Hs0 !g(k)≠ Hs1 !g(k) . 
Since ! is 1-random and each of the sets Ik(i) is a finite set of strings, there exist some k0 such that for each k > k0 and 
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each i < 2k the set Ik(i) does not contain any prefix of !. Now suppose that some number 2k + i with k > k0 and i < k is 
enumerated into W at some stage s0, and towards a contradiction suppose that Hs0 !g(k)= H !g(k) . Then Ik(i) will require 
attention at every sufficiently late stage s at which !s does not have a prefix in Ik . Eventually ! !k+ f (k) will be enumerated 
into Ik(i), which contradicts the choice of k0. This concludes the proof that H is linearly-complete, and the proof of the 
second clause.

2.2. Proof of Theorem 1.6, clauses (iii) and (iv)

Recall the following theorem.

Theorem 1.6 (Clauses (iii) and (iv)). Consider a 1-random c.e. real !, a c.e. set H, a computable function g and a right-c.e. function f
such that 

∑
i 2− f (i) is finite.

(iii) If g = O (n) and K (! ! f (n) | H !g(n)) = O (1) then H is linearly-complete.
(iv) If H is linearly-complete then it computes ! (and any c.e. real) with use 2n+O(1) .

For clause (iii) the proof is similar to clause (ii). Let c be a constant such that g(n) ≤ c ·n and K (! ! f (n) | H !g(n)) < c for 
all n. We enumerate a Solovay test (Ik) as follows. At any stage s of the construction, for each k let mk be the first stage ≤ s
at which a string was enumerated into Ik if such a stage exists, and let mk be undefined otherwise. We say that Ik requires 
attention at stage s if k ∈ W s , Ks(!s ! f (k) | Hs !g(k)) < c, Hs !g(k)= Hmk !g(k) or mk is undefined, and:

Ik = ∅ or the last string enumerated in Ik is not a prefix of !s.

At stage s + 1 let k be the least number such that Ik requires attention and enumerate !s+1 ! f (k) into Ik (or do nothing if 
no Ik requires attention). This concludes the enumeration of (Ik).

First we show that (Ik) is a Solovay test. If s0 < s1 are two stages at which enumerations into Ik are made, we have 
Ks0 (!s0 ! f (k) | Hs0 !g(k)) < c, Ks1 (!s1 ! f (k) | Hs0 !g(k)) < c and !s0 ! f (k)≠ !s1 ! f (k) . Hence for each new enumeration 
into Ik , we have an additional description in the universal machine with oracle Hmk !g(k) (where mk is the first stage where 
an enumeration occurred in Ik) of length less than c. Since there are at most 2c such descriptions, for each k there can be 
at most 2c enumerations into Ik . So the measure of Ik is at most 2c− f (k) . By our hypothesis concerning f it follows that 
(Ik) is a Solovay test.

Now we show that W is linearly reducible to H . It suffices to show that for all but finitely many n, if n is enumerated 
into W at some stage s0 then there exists a stage s1 > s0 such that Hs0 !g(n)≠ Hs1 !g(n) . Since ! is Martin-Löf random, 
there exist some n0 such that for each n > n0 the set In does not contain any prefix of !. Suppose that some n > n0 is 
enumerated into W at some stage s0, and towards a contradiction suppose that Hs0 !g(n)= H !g(n) . Then In will require 
attention at every sufficiently late stage s at which !s does not have a prefix in In . Eventually ! ! f (n) will be enumerated 
into In , which contradicts the choice of n0. This concludes the proof that H is linearly-complete, and the proof of the third 
clause.

For clause (iv), let us start by examining how ! may be coded into a c.e. set. Given a c.e. real α, there is a computable 
increasing sequence of rational numbers (αs) that converges to α. For each t ∈ N let:

pα(t) = |{s | αs(t) ≠ αs+1(t) ∧ αs+1(t) = 1}| ≤ 2t

σα(t) = 1pα(t) ∗ 02t−pα(t).

The c.e. real α can be coded into a c.e. set Xα as follows:

Xα = σα(0) ∗ σα(1) ∗ · · · (2.2.1)

Then clearly α is computable from Xα with use bounded by 2n , and Xα is computable from α with use bounded by 
⌊log n⌋ + 1. From this coding, we can deduce the fourth clause of the theorem. Let α be a c.e. real and consider Xα as 
above. Since H is linearly-complete, Xα !2n is uniformly computable from H !2n+O(1) . Since α !n is uniformly computable 
from Xα !2n , it follows that it is also uniformly computable from H !2n+O(1) .

2.3. Proof of Theorem 1.3

Recall the following theorem.

Theorem 1.3. Let g be a computable function.

(1) If 
∑

n 2−g(n) converges, then every c.e. set is computable from any !-number with use g.
(2) If 

∑
n 2−g(n) diverges and g is nondecreasing, then no !-number can compute all c.e. sets with use g. In fact, in this case, no 

linearly complete c.e. set can be computed by any c.e. real with use g.
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For clause (1), let A be a c.e. set and let c be a constant such that 
∑

i>c 2−g(i) < 1. We construct a prefix-free machine 
N using the Kraft–Chaitin theorem as follows. At stage s + 1, for each n ∈ As+1 − As which is larger than c, we enumerate 
an N-description of !s+1 !g(n) (chosen by the online Kraft–Chaitin algorithm) of length g(n). This completes the definition 
of N . Note that the weight of the domain of N is at most 

∑
n>c 2−g(n) < 1, so that the machine N is well defined by the 

Kraft–Chaitin theorem. Since ! is 1-random, there exists some n0 > c such that for all n > n0 we have K N (! !g(n)) > g(n). 
Hence if some n > n0 enters A at some stage s + 1, we have that !s+1 !g(n) is not a prefix of !. Since ! is a c.e. real, this 
means that ! computes A with use g , which concludes the proof of clause (1) of Theorem 1.3.

We first prove clause (2) of Theorem 1.3 for the case when the linearly-compete set is the halting set with respect 
to some Kolmogorov numbering. We do this because the proof of Theorem 1.4 is based on the same ideas. On the other 
hand, the general case can easily be obtained with some modifications of the argument which we lay out at the end of 
this section. So suppose that A is the halting problem with respect to a Kolmogorov numbering (Me) of Turing machines. 
Let (*e, αe) be an effective list of all Turing functionals *e with use g and c.e. reals αe . This effective list comes with 
nondecreasing computable rational approximations (αe[s]) to αe and effective enumerations *e[s] of *e , which are based 
on the underlying universal machine. Also let U be the universal machine whose halting problem is A, and let f be a 
computable function such that for each e the function n '→ f (e, n) is O (n) and such that U ( f (e, n)) ≃ Me(n) for all e, n. By 
definition, we have A = { f (e, n) | Me(n) ↓}. We will define a Turing machine M such that the following requirements are 
met:

Re : A ≠ *
αe
e .

Note that M is not directly mentioned in the requirement Re , but is implicit in the definition of A. By the recursion 
theorem we can assume given b such that M = Mb . During the construction of M we check the enumeration of A to ensure 
that there does not exist any n with A( f (b, n)) = 1 and for which we have not yet defined M on argument n. If such an 
n is found, then we terminate the construction of M (so that, in fact, no such n can be found at any stage for the correct 
index b). It is also convenient to speed up the enumeration of A, so that whenever we define M on argument n, f (b, n) is 
enumerated into A at the next stage.

Since 
∑

i 2−g(i) = ∞, by Lemma 1.7 we also have 
∑

n 2n−g(2n) = ∞. Let It = [2t − 1, 2t+1 − 1) so that |It | = 2t . Let ( J c(e))
be a computable partition of N into consecutive intervals (i.e. such that J c(e) and J c′ (e′) are disjoint if e ̸= e′ or c ≠ c′), 
such that:

∑

t∈ Jc(e)

2(t+c)−g(2(t+c)) > 2c for each e, c. (2.3.1)

Such a partition exists by the hypothesis for g and Lemma 1.7. Let M[s] denote the machine M as defined by the end 
of stage s, i.e. M(n)[s] ↓ precisely if an axiom to that effect is enumerated prior to the end of stage s. For each pair c, 
e let jc,e be the largest number j such that there exists t ∈ J c(e) with j ∈ It . We say that Re requires attention with 
respect to (c, t) at stage s + 1, if t is the least number in J c(e) such that M(i)[s] is not defined for some i ∈ It , and if also 
*

αe
e ( j)[s + 1] = A( j)[s + 1] for all j ≤ e · jc,e . We say Re(c) requires attention with respect to t at some stage if Re requires 

attention at that stage with respect to (c, t). Let ⟨c, e⟩ be an effective bijection between N × N and N. The definition of M
is as follows. At stage s + 1 we look for the least ⟨c, e⟩ such that Re(c) requires attention. If there exists no such ⟨c, e⟩ < s, 
we go to the next stage. Otherwise let ⟨c, e⟩ be this tuple and let t be the least number such that Re(c) requires attention 
with respect to t . Let k be the least element of It such that Ms(k) is undefined and define Ms+1(k) = 0. We say that Re(c)
received attention with respect to t at stage s + 1. This concludes the definition of M .

It remains to verify that each Re is met. Towards a contradiction, suppose that Re is not met. Let b be an index of the 
machine M and fix c to be a constant such that f (b, n) ≤ 2c−1 · n for all n. By the padding lemma we can assume that 
e > 2c−1, which means that if Re(c) requires attention at stage s + 1 then:

*
αe
e ( f (b, i))[s + 1] ↓= A( f (b, i))[s + 1] for all i ∈ It and all t ∈ Jc(e). (2.3.2)

Fix t ∈ J c(e) and let s0 < s1 be stages at which Re(c) receives attention with respect to t . Since all elements of It are less 
than 2t+1, g is nondecreasing, and since we define M on i ∈ It at stage s0, causing f (b, i) to be enumerated into A, it 
follows that we must see an increase in αe !g(2c−1·2t+1)= αe !g(2t+c) between stages s0 and s1. If Re is not satisfied, as we 
have assumed, then for each t ∈ J c(e) it will receive attention |It | = 2t many times, causing a total increase in αe !g(2t+c) of 
2t−g(2t+c) . Summing over all t ∈ J c(e) this means that ultimately:

αe ≥
∑

t∈ Jc(e)

2t−g(2t+c) = 2−c ·
∑

t∈ Jc(e)

2t+c−g(2t+c) > 2−c · 2c = 1.

This gives the required contradiction, since αe ≤ 1. We can conclude that each Re is met, which completes the proof of 
clause (2) of Theorem 1.3 for the case of halting sets.

For the more general case, assume that A is merely a linearly-complete c.e. set. Then for all c.e. sets W we have 
K (W !n | A !n) = O (1) (see [6]). As before, let (αe) be an effective enumeration of all c.e. reals in [0, 1], with nondecreasing 
rational computable approximations (ae[s]) respectively. We want to show that for each e, the real αe does not compute 
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A with oracle-use bounded above by g . If αe did compute A in this way, then we would have K (A !n | αe !g(n)) = O (1)
for all n, and since A is linearly complete, it follows from the remark above that for each c.e. set W we would have 
K (W !2n | αe !g(2n)) = O (1) for all n. So it suffices to enumerate a c.e. set W such that the following conditions are met for 
each e, c:

Re(c) : If for all n, K (W !2n | αe !g(2n)) ≤ c, then αe > 1.

As before we let It = [2t − 1, 2t+1 − 1) for each t , so that |It | = 2t and all elements of It are less than 2t+1. We also define 
an appropriate version of the intervals J c(e) as follows. We consider a computable partition of N into finite intervals J c(e)
for e, c ∈ N such that

∑

t∈ Jc(e)

2t−g(2t+1) > 2c for each e, c ∈ N. (2.3.3)

As before, such a partition of N exists by Lemma 1.7. We say that Re(c) requires attention with respect to t ∈ J c(e) at stage 
s + 1, if It − W s ≠ ∅ and if Ks+1(W s !2t′+1 | αe[s + 1] !g(2t′+1)) ≤ c for all t′ ∈ J c(e). We say that Re(c) requires attention 
at stage s + 1 if it requires attention with respect to some t ∈ J c(e). The enumeration of W takes place as follows. At stage 
s + 1 we look for the least ⟨c, e⟩ such that Re(c) requires attention. If there exists no such ⟨c, e⟩ < s, we go to the next 
stage. Otherwise let ⟨c, e⟩ be this tuple and let t be the least number such that Re(c) requires attention with respect to t . 
Let k be the least element of It − W s and enumerate k into W s+1. We say that Re(c) received attention with respect to t
at stage s + 1. This concludes the enumeration of W .

It remains to verify that each Re is met. Towards a contradiction, suppose that Re is not met. Fix t ∈ J c(e) and for each 
i ≤ 2t−c let si be the stage where Re(c) receives attention with respect to t for the (2c · i)-th time. Since whenever Re(c)
requires attention with respect to t at some stage s +1 we have Ks+1(W s !2t+1 | αe[s +1] !g(2t+1)) ≤ c and there are at most 
2c many descriptions of length c, between each si and si+1 we must see an increase in αe !g(2t+1) . If Re is not satisfied, as 
we have assumed, then for each t ∈ J c(e) it will receive attention |It | = 2t many times, meaning an increase in αe !g(2t+1)

of at least 2t−c−g(2t+1) . Summing over all t ∈ J c(e) we have that

αe ≥
∑

t∈ Jc(e)

2t−c−g(2t+1) = 2−c ·
∑

t∈ Jc(e)

2t−g(2t+1) > 2−c · 2c = 1.

This is the required contradiction, since α ≤ 1. We conclude that each Re(c) is met, which completes the proof of clause (2).

2.4. Proof of Theorem 1.4

Recall the following theorem.

Theorem 1.4. Let g be a nondecreasing computable function such that 
∑

n 2−g(n) converges to a 1-random real. Then a c.e. real is 
1-random if and only if it computes the halting problem with respect to a Kolmogorov numbering with use g.

According to the hypothesis of Theorem 1.4 and Lemma 1.7 we have that 
∑

i 2i−g(2i) is 1-random. Suppose that A is the 
halting problem with respect to a Kolmogorov numbering (Me) of Turing machines, and α is a c.e. real which computes 
A with use g . Let U be the universal machine whose halting problem is A, and let f be a computable function such 
that n '→ f (e, n) is O (n) and such that U ( f (e, n)) ≃ Me(n) for all e, n. By definition, we have A = { f (e, n) | Me(n) ↓}. 
Moreover let * be a Turing functional with oracle use uniformly bounded by g(n) on each argument n, such that A = *α . 
Fix computable enumerations (*s), (As) of *, A respectively. The proof proceeds much as in the first proof we gave for 
clause (2) of Theorem 1.3 previously. Once again we construct a machine M , and assume by the recursion theorem that we 
are given b such that M = Mb . During the construction of M we check the enumeration of A as before, so as to ensure 
that there is no n for which f (b, n) is enumerated into A but for which we have not yet defined M on argument n, etc. 
The machine M that we construct will be very simple, and it is the timing of enumerations into the domain of M which 
is key. Fix c to be a constant such that f (b, n) ≤ 2c−1 · n for all n. Again we define It = [2t − 1, 2t+1 − 1) so that |It | = 2t . 
This time, however, we say that It requires attention at stage s + 1, if M(i)[s] is not defined for some i ∈ It , and if also 
*α( j)[s + 1] = A( j)[s + 1] for all j ≤ 2c−12t+1 = 2c+t . For the least t which requires attention at stage s + 1 (if any), we find 
the least i ∈ It such that M(i)[s] ↑ and we define M(i) ↓= 0.

The rough idea is now to define a sequence of stages st such that if we define γt = α[st] and δt = ∑t−1
n=0 2n+c−g(2n+c) , 

then

2c · (γt+1 − γt) ≥ (δt+1 − δt). (2.4.1)

According to the characterisation (1.3.1) of Solovay reducibility, this means that the limit δ of (δt) is Solovay reducible to the 
limit α of (γt). Since δ is 1-random, it then follows that α is 1-random, as required. We define s0 = 0 and, for each t > 0, 
we define st to be the first stage at which It receives attention. Each time It receives attention, we must see an increase in 
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α !g(2c−1·2t+1)= α !g(2t+c) . Since It will receive attention |It | = 2t many times, this means a total increase in α !g(2t+c) of at 
least 2t−g(2t+c) = 2−c2t+c−g(2t+c) . We shall therefore have that (2.4.1) holds, if we define γt = α !g(2t+c) [st].

3. Computing c.e. reals from Omega numbers

This section is devoted to the proof of Theorem 1.2. In Section 3.1 we derive the first part of this result from Theorem 1.3, 
while Section 3.2 contains a more sophisticated argument for the proof of the second part.

3.1. Proof of Theorem 1.2, clause (1)

Recall the following theorem.

Theorem 1.2 (Clause (1)). Let h be computable. If 
∑

n 2n−h(n) converges, then for any !-number ! and any c.e. real α, α can be 
computed from ! with use bounded by h.

Let ! be an omega number, let α be a c.e. real and let g = h(n) − n be as in the statement of the first clause. By the 
proof of clause (iv) of Theorem 1.6 in Section 2.2, there exists a c.e. set A which computes α with use 2n . By Lemma 1.7

∑

i

2−g(i) < ∞ ⇒
∑

i

2i · 2−(log 2i+g(log 2i)) < ∞ ⇒
∑

i

2−(log i+g(log i)) < ∞ (3.1.2)

so by Theorem 1.3 the set A is computable from ! with use bounded by log n + g(log n). By composing the two reductions 
we conclude that α is computable from ! with use bounded by log 2n + g(log 2n) i.e. n + g(n).

We can use a more direct argument to prove the same fact, without the hypothesis that h(n) − n is non-decreasing. Let 
g , !, α be as above and let (αs), (!s) be computable nondecreasing dyadic rational approximations that converge to α, !
respectively. We construct a Solovay test along with a c.e. set I , as follows. At each stage s + 1 we consider the least n
such that αs(n) ̸= αs+1(n), if such exists. If there exists such an n we define σs = !s+1 !n+g(n) and enumerate s into I . We 
verify that the set of strings σs , s ∈ I is a Solovay test. Note that for every n, the number of stages s such that n is the 
least number with the property that αs(n) ̸= αs+1(n) is bounded above by the number of times that αs(n) can change from 
0 to 1 in this monotone approximation to α. Hence this number is bounded above by 2n . So:

∑

s∈I

2−|σs| ≤
∑

n

2n · 2−g(n)−n =
∑

n

2−g(n) < ∞.

Since ! is Martin-Löf random, there exists some s0 such that none of the strings σs for s ∈ I and s > s0 are prefixes of !. 
This means that whenever our construction enumerates s in I because we find n with αs(n) ̸= αs+1(n), there exists some 
later stage where the approximation to ! !n+g(n) changes. Hence with oracle ! !s+g(s) we can uniformly compute α(n), so 
α is computable from ! with oracle use h.

3.2. Proof of Theorem 1.2, clause (2)

Recall the following theorem.

Theorem 1.2 (Clause (2)). Let h be computable and such that h(n) − n is non-decreasing. If 
∑

n 2n−h(n) diverges then no !-number 
can compute all c.e. reals with use h + O (1). In fact, in this case there exist two c.e. reals such that no c.e. real can compute both of 
them with use h + O (1).

Given a computable function h such that h(n) − n is non-decreasing and 
∑

i 2n−h(n) diverges, we need to construct two 
c.e. reals such that no c.e. real can compute both of them with use h + O (1). Our presentation will be neater, however, if 
we consider the following elementary fact, which allows one to ignore the constants in the previous statement.

Lemma 3.1 (Space lemma). If g is computable, non-decreasing and 
∑

n 2−g(n) = ∞ then there exists a computable non-decreasing 
function f such that limn( f (n) − g(n)) = ∞ and 

∑
n 2− f (n) = ∞.

Proof. Consider a computable increasing sequence (ni) such that n0 = 0 and
∑

n∈Ik

2−g(n) > 2k for all k

where Ik = [nk, nk+1). Then for each k and each i ∈ [nk, nk+1) define f (i) = g(i) + k. Then
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∑

n

2− f (n) ≥
∑

k

⎛

⎝
∑

n∈Ik

2− f (n)

⎞

⎠ =
∑

k

⎛

⎝2−k ·
∑

n∈Ik

2−g(n)

⎞

⎠ ≥
∑

k

(
2−k · 2k

)
= ∞

which concludes the proof. ✷

By Lemma 3.1, for the proof of the second clause of Theorem 1.2 it suffices to show that, given a computable non-
decreasing function h with 

∑
i 2n−h(n) = ∞, there exist two c.e. reals such that no c.e. real can compute both of them with 

use h. We need to construct two c.e. reals α, β such the requirement

R(*,-,γ ) : α ≠ *γ ∨ β ≠ -γ (3.2.1)

is met for every triple (*, -, γ ) such that *, - are Turing functionals with use h and γ is a c.e. real. For the simple case 
where h(n) = n + O (1), this was done by Yu and Ding in [23], and a simplification of their argument appeared in [9]. The 
underlying method for this type of argument involves an amplification game, which we discuss in Section 3.2.1. Then in 
Section 3.2.2 we build on these ideas in order to produce a more sophisticated argument which deals with an arbitrary 
choice of h satisfying the hypothesis of the theorem.

3.2.1. Amplification games
The reals γ in requirements (3.2.1) will be given with a non-decreasing computable rational approximation (γs). Our 

task is to define suitable computable approximations (αs), (βs) to α, β respectively, so that (3.2.1) is met. The idea is that 
if (the approximation to) α !n changes at a stage where *γ is defined to be an extension of (the previous version of) α !n , 
then either α ≠ *γ or (the approximation to) γ !h(n) needs to change at a later stage (and similarly for β). This gives us 
a way to drive γ to larger and larger values, if *, - insist on mapping the current approximations of γ to the current 
approximations of α, β respectively.

In order to elaborate on this approach, consider the following game between two players, which monotonically approx-
imate two c.e. reals α, γ respectively. Each of these numbers has some initial value, and during the stages of the game 
values can only increase. If α increases and i is the leftmost position where an α-digit change occurs, then γ has to in-
crease in such a way that some γ -digit at a position ≤ h(i) changes. This game describes a Turing computation of α from 
γ with use h. If γ has to code two reals α, β then we get a similar game (where, say, at each stage only one of α, β can 
change). In order to block one of the reductions in (3.2.1) the idea is to devise a strategy which forces γ to either stop 
computing α, β in this way, or else grow to exceed the interval (0, 1) to which it is assumed to belong.

It turns out that in such games, there is a best strategy for γ , in the sense that it causes the least possible increases 
in γ while responding to the requests of the opponent(s). We say that γ follows the least effort strategy if at each stage it 
increases by the least amount needed in order to satisfy the requirements of the game.

Lemma 3.2 (Least effort strategy). In a game where γ has to follow instructions of the type ‘change a digit at position ≤ n’, the least 
effort strategy is a best strategy for γ . In other words, if a different strategy produces γ ′ then at each stage s of the game γs ≤ γ ′

s .

Proof. We use induction on the stages s. We have that γ0 ≤ γ ′
0. If γs = γ ′

s then it is clear from the definition of the least 
effort strategy that the induction hypothesis will hold at stage s + 1. So suppose otherwise. Then γs < γ ′

s so that there will 
be a position n such that 0 = γs(n) < γ ′

s (n) = 1 and γs ! n = γ ′
s ! n. Suppose that γ , γ ′ are forced to change at a position ≤ t

at stage s + 1. If t < n it is clear that γs+1 ≤ γ ′
s+1. Otherwise the leftmost change γ can be forced to make is at position n. 

Once again γs+1 ≤ γ ′
s+1. ✷

Lemma 3.2 allows us to assume a fixed strategy for the opponent approximating γ , which reduces our analysis to 
the assessment of a deterministic process, once we specify our strategy for the requests that the approximations to α, β
generate. The following observation is also useful in our analysis.

Lemma 3.3 (Accumulation). Suppose that in some game (e.g. like the above) γ has to follow instructions of the type ‘change a digit at 
position ≤ n’. Although γ0 = 0, some γ ′ plays the same game while starting with γ ′

0 = σ for a finite binary expansion σ . If γ and γ ′

both use the least effort strategy and the sequence of instructions only ever demands change at positions > |σ | then γ ′
s = γs + σ at 

every stage s.

Proof. By induction on s. For s = 0 the result is obvious. Suppose that the induction hypothesis holds at stage s. Then 
γ ′

s , γs have the same expansions after position |σ |. At s + 1, some demand for a change at some position > |σ | appears and 
since γ , γ ′ look the same on these positions, γ ′

s will need to increase by the same amount that γs needs to increase. So 
γ ′

s+1 = γs+1 + σ as required. ✷

We are now ready to describe the strategy for the approximation of α, β restricted to an interval (t − n, t]. This strategy 
automatically induces a deterministic response from γ according to the least effort strategy.
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Definition 3.4. The h-load process in (t − n, t] with (α, β, γ ) is the process which starts with α0 = β0 = γ0 = 0, and at each 
stage 2−t is added alternately in α and β . Moreover at each stage s + 1, if k is the least number such that αs+1 !k≠ αs !k or 
βs+1 !k≠ βs !k , we add to γ the least amount which can change γ !h(k) .

In more detail, the h-load process in (t −n, t] with (α, β, γ ) is defined by the following instructions. Assume that α, β , γ
have initial value 0. Repeat the following instructions until α(i) = β(i) = 1 for all i ∈ (t − n, t].

(1) If s odd then, let α = α + 2−t and let k equal the leftmost position where a change occurs in α. Also add to γ the least 
amount which causes a change in γ !h(k) .

(2) If s even, let β = β + 2−t and let k equal the leftmost position where a change occurs in β . Also add to γ the least 
amount which causes a change in γ !h(k) .

It is not hard to see that the above procedure describes how γ evolves when it tries to code α, β via Turing reductions 
with use h and it uses the least effort strategy. Player γ follows the least effort strategy when it increases by the least amount 
which can rectify the functionals holding its computations of α and β . Note that in a realistic construction, the steps of the 
above strategy are supposed to happen at stages where γ currently computes the first t + 1 bits of both α, β via *, -
respectively.

The following lemma says that in the special case where h(n) = n + O (1), the h-load process is successful at forcing γ
to grow significantly.

Lemma 3.5 (Atomic attack). Let n > 0 and h(x) = x + c for some constant c. For any k > 0 the h-load process in (k, k + n] with 
(α, β, γ ) ends with γ = n · 2−k−c .

Proof. By induction: for n = 1 the result is obvious. Assume that the result holds for n. Now pick k > 0 and consider the 
attack using (k −1, k +n]. It is clear that up to a stage s0 this will be identical to the procedure with attack interval (k, k +n]. 
By the induction hypothesis γs0 = n2−k−c and α(i) = β(i) = 1 for all i ∈ (k, k + n], while α(k) = β(k) = 0. According to the 
next step α changes at position k and this forces γ to increase by 2−k−c since γ has no 1s to the right of position k + c. 
Then β does the same and since γ still has no 1s to the right of position k +c, γ has to increase by 2−k−c once again. So far

γ = n2−k−c + 2−k−c + 2−k−c = n2−k−c + 2−(k−1)−c

and α(i) = β(i) = 0 for all i ∈ (k, k + n] while α(k) = β(k) = 1. By applying the induction hypothesis again together with 
Lemma 3.3, the further increase of γ will be exactly n2−k−c . So

γ = n2−k−c + 2−(k−1)−c + n2−k−c = (n + 1) · 2−(k−1)−c

as required. ✷

The analysis we just presented is sufficient for a construction of α, β which proves the second clause of Theorem 1.2 for 
the specific case that h(n) = n + O (1). One only has to assign attack intervals to different versions of requirement (3.2.1)
and implement the h-load process in a priority fashion, gradually satisfying all conditions. In the next section we build on 
these ideas in order to deal with the general case for h, and in Section 3.2.3 we give the formal construction of α, β .

3.2.2. Generalised amplification games
We wish to obtain a version of Lemma 3.5 which does not depend on a fixed choice of h. For ease of notation, let 

g(n) = h(n) − n and assume that g is non-decreasing.
It is tempting to think that perhaps, in this general case, the h-load process in (k, k + n] with (α, β, γ ) ends up with

γ = 2−k ·
∑

i∈(k,k+n]
2−g(i) (false amplification lower bound). (3.2.2)

With a few simple examples, the reader can be convinced that this is not the case. Luckily, the h-load process does give 
a usable amplification effect, but in order to obtain the factor in this amplification we need to calibrate the divergence of 
the series 

∑
i 2−g(i) , by viewing g as a step-function.

Definition 3.6 (Signature of a non-decreasing function). Let g : N → N be a non-decreasing function. The signature of g is a 
(finite or infinite) sequence (c j, I j) of pairs of numbers c j and intervals I j (for j ≥ 0), such that (I j) is a partition of N, 
g(x) = c j for all x ∈ I j and all j, and c j > c j′ for j > j′ . The length of the sequence (c j, I j) is called the length of the 
signature of g .

Note that if (c j, I j) is the signature of g then 
∑

i 2−g(i) = ∑
j |I j| · 2−c j , where in the latter sum the indices run over the 

length of the sequence (c j, I j). More generally, if J is an interval of numbers which are less than the length of the signature 
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of g we have 
∑

i∈I 2−g(i) = ∑
j∈ J |I j | · 2−c j where I = ∪ j∈ J I j . We define a truncation operation that applies to such partial 

sums, in order to replace the false amplification lower bound (3.2.2) with a correct lower bound.

Definition 3.7 (Truncation). Given a real number x ∈ (0, 1) and an increasing sequence (c j), for each t let

T (x, ct) =
∑

i≤t

ni · 2−ci where x = n0 · 2−c0 + n1 · 2−c1 + · · · =
∑

i

ni · 2−ci

is the unique representation of x as a sum of multiples of 2−c j such that ni+1 · 2−ci+1 < 2−ci for all i.

We now define a sequence of truncated sums that can be used in replacing the false lower bound (3.2.2) with a valid 
one. These quantities depend on the sequence (c j, I j), which in turn depends on the function g .

Definition 3.8 (Truncated sums). Given the finite or infinite sequence (c j, I j) and k such that c j and I j are defined, the 
sequence of truncated sums with respect to k is defined inductively as follows (i < k):

Sk(0) = T (|Ik| · 2−ck , ck−1)

Sk(i) = T (|Ik−i | · 2−ck−i + Sk(i − 1), ck−i−1) for i > 0.

Before we show that the h-load strategy with (α, β, γ ) forces γ to grow to a suitable truncated sum, we show that 
the truncated sums grow appropriately, assuming that 

∑
i 2−g(i) is unbounded. Note that for increasing i, the sum Sk(i)

corresponds to later stages of the h-load strategy, and intervals Ik−i which are closer to the decimal point. This explains the 
decreasing indices in the above definition and the following lemma.

Lemma 3.9 (Lower bounds on truncated sums). For each t < k we have Sk(t) ≥
∑

i≤t |Ik−i | · 2−ck−i − 1.

Proof. Since 
∑

i∈(c0,ck] 2−i < 1 it suffices to show that for each t < k we have
∑

i≤t

|Ik−i | · 2−ck−i ≤ Sk(t) +
∑

i∈(ck−t−1,ck]
2−i. (3.2.3)

We use finite induction on t < k. For t = 0, we have |Ik| · 2−ck − Sk(0) ≤ ∑
i∈(ck−1,ck] 2−i . Now inductively assume that (3.2.3)

holds for some t such that t < k − 1. Then using the induction hypothesis we have:
∑

i≤t+1

|Ik−i | · 2−ck−i =
∑

i≤t

|Ik−i| · 2−ck−i + |Ik−t−1| · 2−ck−t−1 ≤ Sk(t) +
∑

i∈(ck−t−1,ck]
2−i + |Ik−t−1| · 2−ck−t−1 .

But Sk(t) + |Ik−t−1| · 2−ck−t−1 is clearly bounded above by T (Sk(t) + |Ik−t−1| · 2−ck−t−1 , ck−t−2) +
∑

i∈(ck−t−2,ck−t−1] 2−i . So:
∑

i≤t+1

|Ik−i | · 2−ck−i ≤ T (Sk(t) + |Ik−t−1| · 2−ck−t−1 , ck−t−2) +
∑

i∈(ck−t−2,ck]
2−i = Sk(t + 1) +

∑

i∈(ck−t−2,ck]
2−i,

which concludes the induction step and the proof. ✷

Now, in general, the signature of g may be finite or infinite. The case in which this signature is finite, however, corre-
sponds to the situation h(n) = n + O (1), which was previously dealt with by Yu and Ding in [23], as discussed earlier. For 
ease of notation, we therefore assume from now on that the signature of g is infinite.

Suppose that we apply the h-load process in I = ⋃
j∈[k−t,k] I j . Then we want to show that γ will be larger than 2−m · Sk(t)

by the end of the process, where m is the least element of I . We will derive this (see Corollary 3.11) from the following 
more general result, which can be proved by induction. We note that in (3.2.5), in the trivial case where t = 0 we let 
Sk(t − 1) := 0.

Lemma 3.10. Let g : N → N be a non-decreasing computable function with signature (c j, I j) (of infinite length), let h(x) = x + g(x)
and suppose t ≤ k. If m is either inside Ik−t or is the largest number which is less than all numbers in Ik−t , then the final value of γ
after the h-load process with (α, β, γ ) in the interval

(m,max Ik−t] ∪ (
⋃

i∈(k−t,k]
Ii) (3.2.4)

has the property that

T (2m · γ , ck−t) = Sk(t − 1) + (max Ik−t − m) · 2−ck−t . (3.2.5)
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Proof. We use finite induction on the numbers t ≤ k and the numbers m in Ik−t ∪ {min Ik−t − 1}. For the case when t = 0, 
the h-load process occurs in the interval (m, max Ik], where m is either min Ik − 1 or any number in Ik . In this case, by 
Lemma 3.5 we have T (2m · γ , ck) = (max Ik − m) · 2−ck . Therefore in this case (3.2.5) holds.

Now consider some t > 0 (and, of course, t ≤ k) and any m ∈ [min Ik−t − 1, max Ik−t), and inductively assume that when 
the attack occurs in the interval

(m + 1,max Ik−t] ∪ (
⋃

i∈(k−t,k]
Ii) (3.2.6)

the final value of γ satisfies

T (2m+1 · γ , ck−t) = Sk(t − 1) + (max Ik−t − m − 1) · 2−ck−t . (3.2.7)

Note that this conclusion follows from the induction hypothesis, even in the case that m = max Ik−t − 1, since then the 
induction hypothesis gives:

T (2m+1 · γ , ck−(t−1)) = Sk(t − 2) + |Ik−(t−1)| · 2−ck−(t−1) . (3.2.8)

Now if we let the r.h.s. equal δ, then by definition T (δ, ck−t) = Sk(t − 1), giving (3.2.7), as required.
There are two qualitatively different cases regarding the value of m + 1. The first one is when m + 1 = max Ik−t , which 

means that m + 1 is the first number in the latest interval Ik−t . The other case is when m + 1 < max Ik−t and m + 1 ≥
min Ik−t . What is special in the first case is that half-way through the h-load process in the interval (3.2.4), when α(m + 1)
changes, this is the first time that some α(i) change requires γ to change on digit i + ck−t (or before that). All previous 
requests on γ required a change at i + ck−t+s for s > 0. In other words, the case m + 1 = max Ik−t is special because it 
is when we cross into a new interval. Despite this apparent difference between the two cases, they can be dealt with 
uniformly, as we now show.

The attack on the interval (3.2.4) can be partitioned into three phases. Let ℓ be the maximum of the interval (3.2.4). 
Recall that each stage of this attack consists of adding 2−ℓ alternately to α and β . The first phase of the attack consists of 
those stages up to the point where α(m + 1) = β(m + 1) = 0 and α(i) = β(i) = 1 for all i in the interval (3.2.6). According to 
the induction hypothesis, at the end of the first phase of the attack (3.2.7) holds. By the definition of Sk(t − 1), this number 
is an integer multiple of 2−ck−t . At the next stage of the attack, α(m + 1) will turn from 0 to 1, forcing γ to change at 
position m + 1 + ck−t or higher. This means that T (γ , m + 1 + ck−t) will increase by 2−m−1−ck−t , because it does not have 
any 1s after position m + 1 + ck−t . In other words, T (2m+1 · γ , ck−t) will increase by 2−ck−t . Then β(m + 1) will turn from 0 
to 1, forcing γ to change again at position m + 1 + ck−t or higher. This means that T (2m+1 ·γ , ck−t) will increase by another 
2−ck−t . The latter two stages make up the second phase of the attack. The third and final phase consists of all remaining 
stages of the attack. At the end of the second phase T (2m+1 · γ , ck−t) has increased by

2 · 2−ck−t + Sk(t − 1) + (max Ik−t − m − 1) · 2−ck−t

compared to its initial value (which was 0). By applying the induction hypothesis and the accumulation lemma (Lemma 3.3), 
at the end of the attack T (2m+1 · γ , ck−t) then equals:

2 · 2−ck−t + 2 · (Sk(t − 1) + (max Ik−t − m − 1) · 2−ck−t ) = 2 · (Sk(t − 1) + (max Ik−t − m) · 2−ck−t ).

By definition Sk(t − 1) is an integer multiple of 2−ck−t . The equation above therefore establishes (3.2.5) as required, since if 
T (2m+1 ·α, c) = 2 · C where C is an integer multiple of 2−c , then T (2m ·α, c) = C . This concludes the induction step and the 
proof of the lemma. ✷

The main construction employs h-load processes in unions of consecutive intervals I j from the signature of g . So we 
only need the following special case of Lemma 3.10.

Corollary 3.11 (Lower bound). Let g : N → N be a non-decreasing computable function with infinite signature (c j, I j), and let h(x) =
x + g(x). The final value of γ after the h-load process with (α, β, γ ) in the interval I = ⋃

j∈[k−t,k] I j is at least 2−m · Sk(t), where m
is the largest number less than all elements of I .

Proof. Since m is the largest number which is less than all numbers in Ik−t , we have |Ik−t | = max Ik−t − m, so by the 
definition of the reduced sums and Lemma 3.10 we get

T (2m · γ , ck−t) = Sk(t − 1) + |Ik−t | · 2−ck−t

so

T (2m · γ , ck−t−1) ≥ T (T (2m · γ , ck−t), ck−t−1) = T (Sk(t − 1) + |Ik−t | · 2−ck−t , ck−t−1) = Sk(t),

which means that γ ≥ 2−m · Sk(t). ✷
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We are ready to describe an explicit construction of two reals α, β establishing the second clause of Theorem 1.2 for the 
(remaining) case that g has infinite signature.

3.2.3. Construction of the two reals and verification
Let g be a non-decreasing computable function with infinite signature such that 

∑
i 2−g(i) = ∞, and let h(x) = x + g(x). 

Let (*e, -e, γe) be an effective enumeration of all triples of Turing functionals *e , -e , and c.e. reals γe . According to the 
discussion at the beginning of Section 3.2, for the proof of the second clause of Theorem 1.2, it suffices to construct two c.e. 
reals α, β such that the following requirements are met.

Re : α ≠ *
γe
e ∨ β ≠ -

γe
e . (3.2.9)

Let (c j, I j) be as specified in Definition 3.6. The construction consists of assigning appropriate intervals Je to the require-
ments Re and implementing the h-load process with (α, β, γe) in Je independently for each e, in a priority fashion. We 
start with the definition of the intervals Je , which is informed by the lower bound established in Corollary 3.11. We define 
a computable increasing sequence (n j) inductively and define:

Je =
⋃

j∈(ne,ne+1]
I j.

Let n0 = 1. Given ne , let ne+1 be the least number which is greater than ne and such that if m is the largest number in Ine

then:

2−m · Sne+1(ne+1 − ne) > 1.

According to our hypothesis concerning g and Lemma 3.9, such a number ne+1 exists, so the definition of (n j) is sound. 
Fix a universal enumeration with respect to which we can approximate the Turing functionals *e , -e and the c.e. reals γe . 
The suffix ‘[s]’ on a formal expression means the approximation of the expression at stage s of the universal enumeration. 
The stages of the construction are the stages of the universal enumeration. Recall from Definition 3.4 that each step in the 
h-load process on Je consists of adding 2−ne+1 alternately to α and β . According to this process, we will only allow Re to 
act at most 2ne+1−ne − 1 times for each of α, β . We say that strategy Re is active at stage s if:

(a) α(t)[s] = *
γe
e (t)[s] and β(t)[s] = -

γe
e (t)[s] for all t ∈ ∪i≤e J i .

(b) strategy Re has acted less than 2 · (2ne+1−ne − 1) many times in previous stages.

Construction At each stage s, if there exists no e such that Re is active, then go to the next stage. Otherwise, let e be the 
least such. We say that s is an ‘e-stage’. If there has not been a previous e-stage, or if β was increased at the most recent 
e-stage, then add 2−ne+1 to α and say that Re acts on α at stage s. Otherwise add 2−ne+1 to β and say that Re acts on β . 
Go to the next stage.

We now verify that the construction produces approximations to reals α, β such that requirement Re is met for each e. 
Note that Re is only allowed to act at most 2ne+1−ne − 1 times for each of α, β . This means that no action of Re can change 
a digit of α or β which is outside Je . In particular, the approximations to α and β that are defined in the construction 
converge to two reals in [0, 1].

Finally, we show that for each e, requirement Re is met and is active at only finitely many stages. Inductively suppose 
that this is the case for Ri , i < e. Note that Re can only be active when it has acted less than 2 · (2ne+1−ne − 1) many times. 
Therefore, by the construction and the induction hypothesis, Re is only active at finitely many stages. It remains to show 
that Re is met. Towards a contradiction, suppose that this is not the case. Then for some c.e. real γ ′

e (the one that follows 
the least effort strategy with respect to α, β) throughout a subsequence si , i < k of the stages of the construction, the triple 
(α, β, γ ′

e ) follows a complete h-load process in Je . By Corollary 3.11, it follows that γ ′
e ≥ 2−ne · Sne+1 (ne+1 − ne) and by the 

choice of Je we have γ ′
e > 1. Since the functionals *e , -e have use-function x + g(x), if γe ≠ γ ′

e then the approximations 
to γe in the stages si , i < k can be seen as a suboptimal response to the changes of the bits of α, β in Je according to the 
amplification games of Section 3.2.1. In particular, according to Lemma 3.2 and Lemma 3.3, we have γe[si] ≥ γ ′

e [si] for each 
i < k. This means that γe > 1, which contradicts the fact that γe ∈ [0, 1]. We conclude that Re is satisfied.

4. Proof of Theorem 1.5

Recall the following theorem.

Theorem 1.5. Let a be a c.e. Turing degree and let ! be (an instance of) Chaitin’s halting probability.

(1) If a is array computable, then every real in a is computable from ! with identity use.
(2) Otherwise there exists a c.e. real in a which is not computable from ! with use n + log n.
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Theorem 1.5 can be obtained directly by an application of the methods in [4, Sections 4.2 and 4.3] to the construction 
in the proof of Theorem 1.2 (b). Since there are no new ideas involved in this application, and in the interest of space, 
we merely sketch the argument. In [4, Section 4.2] it was shown that if α is in a c.e. array computable degree, then 
it is computable from 

∑
n g(n) · 2−n with identity use, where g = O (n) is a function with a nondecreasing computable 

approximation. It is not hard to see that this implies that α is computable from ! with identity use, which is clause (1) of 
Theorem 1.5.

In [4, Section 4.3] it was shown that if a is an array noncomputable c.e. degree, then there exist two c.e. reals in 
such that no c.e. real can compute both of them with use n + O (1). This result was obtained by the application of array 
noncomputable permitting to the construction in [23] (which obtained two c.e. reals with the above property). The same 
can be done in entirely similar way to the construction in the proof of Theorem 1.2 (2), which is structurally similar to the 
construction in [23]. This extension of our argument in Section 3.2 shows that the two c.e. reals of the second clause of 
Theorem 1.2 (1) can be found in any array noncomputable c.e. degree. If we choose h(n) = n + log n in this theorem, we 
obtain the second clause of Theorem 1.5.

5. Conclusion and a conjecture

Chaitin’s omega numbers are known to compute the solutions to many interesting problems, and to do so with access 
only to a short initial segments of the oracle. Although ! contains the same information as the halting problem, this 
information is much more tightly packed into short initial segments. Despite these well-known facts, little was known about 
the number of bits of ! that are needed to compute halting probabilities or c.e. sets, and in particular the asymptotically 
optimal use of the oracle in such computations.

In this work we provide answers to these questions, and expose various connections with current research in algorithmic 
randomness. Moreover, our results point to several other open problems which appear to be an interesting direction of 
research.

Barmpalias and Lewis-Pye [7] showed that there exists a c.e. real which is not computable from any omega number 
with use n + O (1). Another proof of this result (which was used to obtain a characterisation of the degrees of the c.e. reals 
with this property) was given in [4, Section 4.3]. We conjecture that this holds more generally in the spirit of this paper. In 
particular, if g is a computable non-decreasing function such that 

∑
i 2−g(i) = ∞, we conjecture that there exists a c.e. real 

which is not computable by any omega number with use g(n) + n.
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