
Journal of Computer and System Sciences 82 (2016) 1283–1299

Contents lists available at ScienceDirect

Journal of Computer and System Sciences

www.elsevier.com/locate/jcss

Optimal asymptotic bounds on the oracle use in computations

from Chaitin’s Omega ✩

George Barmpalias a,b,∗, Nan Fang c, Andrew Lewis-Pye d

a State Key Lab of Computer Science, Institute of Software, Chinese Academy of Sciences, Beijing, China
b School of Mathematics, Statistics and Operations Research, Victoria University of Wellington, New Zealand
c Institut für Informatik, Ruprecht-Karls-Universität Heidelberg, Germany
d Department of Mathematics, Columbia House, London School of Economics, Houghton Street, London, WC2A 2AE, United Kingdom

a r t i c l e i n f o a b s t r a c t

Article history:
Received 5 February 2016
Received in revised form 3 May 2016
Accepted 5 May 2016
Available online 11 June 2016

Keywords:
Halting probability
Oracle use
Oracles
Optimal
Asymptotic
Kolmogorov
Completeness
Computability
Complexity

We characterise the asymptotic upper bounds on the use of Chaitin’s ! in oracle
computations of halting probabilities (i.e. c.e. reals). We show that the following two
conditions are equivalent for any computable function h such that h(n) − n is non-
decreasing: (1) h(n) − n is an information content measure, i.e. the series ∑

n 2n−h(n)

converges, (2) for every c.e. real α there exists a Turing functional via which ! computes
α with use bounded by h. We also give a similar characterisation with respect to
computations of c.e. sets from !, by showing that the following are equivalent for any
computable non-decreasing function g: (1) g is an information-content measure, (2) for
every c.e. set A, ! computes A with use bounded by g. Further results and some
connections with Solovay functions (studied by a number of authors [38,3,26,11]) are given.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Chaitin’s constant is the most well-known algorithmically random number. It is the probability that a universal prefix-free
machine U halts, when a random sequence of 0s and 1s is fed into the input tape. In symbols:

!U =
∑

U (σ)↓
2−|σ |.

While !U clearly depends on the choice of underlying universal prefix-free machine U , all versions of it are quite similar
with respect to the properties we shall be concerned with here. For this reason, when the choice of underlying machine U
is irrelevant, we shall simply refer to !U as an !-number, or denote it by !. The choice of U is essentially equivalent to
the choice of a programming language. Although ! is incomputable, it is the limit of an increasing computable sequence of

✩ Barmpalias was supported by the 1000 Talents Program for Young Scholars from the Chinese Government, and the Chinese Academy of Sciences (CAS)
President’s International Fellowship Initiative No. 2010Y2GB03. Additional support was received by the CAS and the Institute of Software of the CAS. Partial
support was also received from a Marsden grant of New Zealand and the China Basic Research Program (973) grant No. 2014CB340302.

* Corresponding author.
E-mail addresses: barmpalias@gmail.com (G. Barmpalias), nan.fang@informatik.uni-heidelberg.de (N. Fang), A.Lewis7@lse.ac.uk (A. Lewis-Pye).
URLs: http://barmpalias.net (G. Barmpalias), http://fangnan.org (N. Fang), http://aemlewis.co.uk (A. Lewis-Pye).

http://dx.doi.org/10.1016/j.jcss.2016.05.004
0022-0000/© 2016 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.jcss.2016.05.004
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jcss
mailto:barmpalias@gmail.com
mailto:nan.fang@informatik.uni-heidelberg.de
mailto:A.Lewis7@lse.ac.uk
http://barmpalias.net
http://fangnan.org
http://aemlewis.co.uk
http://dx.doi.org/10.1016/j.jcss.2016.05.004
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jcss.2016.05.004&domain=pdf

1284 G. Barmpalias et al. / Journal of Computer and System Sciences 82 (2016) 1283–1299

rational numbers. Such reals are known as computably enumerable reals (c.e. reals, a more general class than the c.e. sets),
and can be viewed as the halting probabilities of (not necessarily universal) prefix-free machines.

The binary expansion of ! is an algorithmically unpredictable sequence of 0s and 1s, which packs a lot of useful infor-
mation into rather short initial segments. In the words of Charles H. Bennett (also quoted by Martin Gardner in [25]),

[Chaitin’s constant] embodies an enormous amount of wisdom in a very small space . . . inasmuch as its first few thou-
sands digits, which could be written on a small piece of paper, contain the answers to more mathematical questions
than could be written down in the entire universe. . .

[Charles H. Bennett [5]]

Being of the same Turing degree, ! may be seen as containing the same information as the halting problem, but it
contains this same information in a much more compact way. It is Turing complete, so it computes all c.e. sets and all c.e.
reals. As one might expect, given these remarkable properties, it is very hard to obtain initial segments of !. The modulus of
convergence in any monotone computable approximation to !, for example, dominates all computable functions. Chaitin’s
incompleteness theorem [14] (also independently proved by Muchnik) tells us that any computably axiomatizable theory
interpreting Peano arithmetic can determine the value of only finitely many bits of !. Solovay [39] exhibited a specific
universal prefix-free machine U with respect to which ZFC cannot determine any bit of !U . Despite these extreme negative
results, Calude, Dinneen and Shu [13,12] computed a finite number of bits for certain versions of ! (i.e. corresponding to
certain canonical enumerations of the prefix-free Turing machines).

Given the Turing completeness of ! and the extreme difficulty of obtaining the bits of its binary expansion, it is interest-
ing to consider the lengths of the initial segments of ! that are used in oracle computations of c.e. sets and c.e. reals. How
many bits of !, for example, are needed in order to compute n bits of a given c.e. real or a given c.e. set? The goal of this
paper is to answer these questions, as well raising and discussing a number of related issues that point to an interesting
research direction, with clear connections to contemporary research in algorithmic randomness.

1.1. Our main results, in context

We review some standard notation and terminology. The positions in the binary expansion of a real (to the right of the
decimal point) are numbered 1, 2, 3, . . . from left to right. Given a real α, we let α(t) denote the value of the digit of α
at position t + 1 of its binary expansion. We identify infinite binary sequences with binary expansions of reals in [0, 1]
and with subsets of the natural numbers N. Subsets of N are denoted by upper-case latin letters while lower-case Greek
letters are used for the reals in [0, 1] (the fact that dyadic rationals have two expansions will not be an issue here). The
use-function corresponding to an oracle computation of a set A, is the function whose value on argument n is the length
of the initial segment of the oracle tape that is read during the computation of the first n bits of A. Given A ⊆ N, we let
A !n denote the initial segment of the characteristic function of A of length n. The n-bit prefix of a real number α is also
denoted by α !n . Some background material on algorithmic randomness is given in Section 1.3.

Definition 1.1 (Use of computations). Given a function h, we say that a set A is computable from a set B with use bounded
by h if there exists an oracle Turing machine which, given any n and B !h(n) in the oracle tape, outputs the first n bits of A.

Use functions are typically assumed to be nondecreasing. We say that a function f : N → N is right-c.e. if there is a
computable function f0 : N × N → N which is non-increasing in the second argument and such that f (n) = lims f0(n, s) for
each n. Our results connect use-functions with information content measures, as these were defined by Chaitin [15]. These are
right-c.e. functions f with the property that

∑
i 2− f (i) converges. This notion is fundamental in the theory of algorithmic

randomness, and is the same as the c.e. discrete semi-measures of Levin [30], which were also used in Solomonoff [37]. For
example, prefix-free complexity can be characterised as a minimal information content measure (by [15,30]). Throughout
this paper the reader may consider log n as a typical example of a computable non-decreasing function f such that

∑
i 2− f (i)

diverges, and 2 log n or (ϵ + 1) log n for any ϵ > 0 as an example of a function f such that
∑

i 2− f (i) converges.
Our results address computations of (a) c.e. sets and (b) c.e. reals. In a certain sense c.e. reals can be seen as compressed

versions of c.e. sets. Indeed, as we explain at the beginning of Section 2, a c.e. real α can be coded into a c.e. set Xα in
such a way that Xα !2n can compute α !n and α !n can compute Xα !2n . So it is not surprising that our results for the
two cases are analogous. Computations of c.e. sets (from !) correspond to use-functions g which are information content
measures, while computations of c.e. reals correspond to use-functions of the form n + g(n), where g is an information
content measure.

Theorem 1.2 (Computing c.e. reals). Let h be computable and such that h(n) − n is non-decreasing.

(1) If
∑

n 2n−h(n) converges, then for any !-number ! and any c.e. real α, α can be computed from ! with use bounded by h.
(2) If

∑
n 2n−h(n) diverges then no !-number can compute all c.e. reals with use h + O (1). In fact, in this case there exist two c.e. reals

such that no c.e. real can compute both of them with use h + O (1).

G. Barmpalias et al. / Journal of Computer and System Sciences 82 (2016) 1283–1299 1285

A considerable amount of work has been devoted to the study of computations with use-function n '→ n + c for
some constant c. Note that these are a specific case of the second clause of Theorem 1.2. These types of reductions are
called computably-Lipschitz, and were introduced by Downey, Hirschfeldt and Laforte in [20] and have been studied in
[23,2,7,9,8,10] as well as more recently in [4,18,1,31]. The second clause of Theorem 1.2 generalises the result of Yu and
Ding in [23] which assumes that h(n) = n + O (1). It would be an interesting project to generalise some of the work that has
been done for computably-Lipschitz reductions to Turing-reductions with computable use h such that

∑
i 2n−h(n) diverges.

We believe that in many cases this is possible. The second clause of Theorem 1.2 can be viewed as an example of this larger
project.

If, as we discussed earlier, c.e. reals are just compressed versions of c.e. sets, then what are the c.e. sets that correspond
to ! numbers? In Section 1.2 (with the proofs deferred to Section 2) we discuss this duality and point out that the linearly-
complete c.e. sets could be seen as the analogues of ! in the c.e. sets. Recall that the linearly complete c.e. sets are those
c.e. sets that compute all c.e. sets with use O (n).1 A natural example of a linearly-complete set is the set of non-random
strings, {σ | C(σ) < |σ |} (where C(σ) denotes the plain Kolmogorov complexity of the string σ) which was introduced by
Kolmogorov [27]. This latter set can be viewed as a set of numbers with respect to the bijection that corresponds to the
usual ordering of strings, first by length and then lexicographically. In [6] it was shown that a c.e. set A is linearly-complete
if and only if C(A !n) ≥ log n − c for some constant c and all n.

Theorem 1.3 (Computing c.e. sets). Let g be a computable function.

(1) If
∑

n 2−g(n) converges, then every c.e. set is computable from any !-number with use g.
(2) If

∑
n 2−g(n) diverges and g is nondecreasing, then no !-number can compute all c.e. sets with use g. In fact, in this case, no

linearly complete c.e. set can be computed by any c.e. real with use g.

Theorem 1.3 is an analogue of Theorem 1.2 for computations of c.e. sets from !. Beyond the apparent analogy, the two
theorems are significantly connected. Theorem 1.3 will be used in the proof of Theorem 1.2, and this justifies our approach
of studying c.e. reals as compressed versions of c.e. sets.

A natural class of a linearly complete c.e. sets are the halting sets, with respect to a Kolmogorov numbering. A numbering
(Me) of plain Turing machines is a Kolmogorov numbering if there exists a computable function f and a machine U such
that U (f (e, n)) ≃ Me(n) for each e, n (where ‘≃’ means that either both sides are defined and are equal, or both sides are
undefined) and for each e the function n '→ f (e, n) is O (n). Kolmogorov numberings, in a sense, correspond to optimal
simulations of Turing machines and are the basis for the theory of plain Kolmogorov complexity, and have been studied in
[33,36].

The following result can be viewed in the context of Solovay functions, which stem from Solovay’s work [38] on
!-numbers and were extensively studied by Bienvenu and Downey [3], Hölzl, Kräling and Merkle [26], and Bienvenu, Merkle
and Nies [11]. A Solovay function is a computable information content measure g such that

∑
i 2−g(i) is 1-random. As we

discussed above, every information content measure is an upper bound on prefix-free Kolmogorov complexity (modulo an
additive constant). By [11], Solovay functions g are exactly the computable tight upper bounds of the prefix-free complex-
ity function n '→ K (n), i.e. a computable function g is a Solovay function if and only if K (n) ≤ g(n) + O (1) for all n and
g(n) ≤ K (n) + O (1) for infinitely many n.

Theorem 1.4 (Solovay functions as tight upper bounds on oracle use). Let g be a nondecreasing computable function such that ∑
n 2−g(n) converges to a 1-random real. Then a c.e. real is 1-random if and only if it computes the halting problem with respect

to a Kolmogorov numbering with use g.

This result is another way to see the halting sets with respect to Kolmogorov numberings as analogues of Chaitin’s !
in the c.e. sets. Moreover, it gives a characterisation of monotone Solovay functions in terms of the oracle-use for certain
computations between c.e. sets and c.e. reals.

Finally we obtain a gap theorem characterising the array computable degrees, in the spirit of Kummer [29]. Recall from
[22] that a Turing degree a is array computable if there function f which is computable from the halting problem with a
computable upper bound on the use of the oracle, and which dominates every function g which is computable in a. Array
computable degrees play a significant role in classical computability theory. Kummer showed that they also relate to initial
segment complexity. He showed that the initial segment plain complexity C(A !n) of every c.e. set A in an array computable
degree is bounded above (modulo an additive constant) by any monotone function f such that limn(f (n) − log n) = ∞. On
the other hand, he also showed that every array noncomputable degree contains a c.e. set A such that C(A !n) is not
bounded above by any function f such that limn(2 log n − f (n)) = ∞. This is known as Kummer’s gap theorem (see [19,
Section 16.1]) since it characterises array computability of the c.e. degrees in terms of a logarithmic gap on the initial

1 We note that this is different than what was defined to be linear reducibility in [10], which was later more commonly known as computably Lipschitz
reducibility.

1286 G. Barmpalias et al. / Journal of Computer and System Sciences 82 (2016) 1283–1299

segment plain complexity. The following is another logarithmic gap theorem characterising array computability in the c.e.
degrees, but this time the gap refers to the oracle use in computations from Chaitin’s omega.

Theorem 1.5. Let a be a c.e. Turing degree and let ! be (an instance of) Chaitin’s halting probability.

(1) If a is array computable, then every real in a is computable from ! with identity use.
(2) Otherwise there exists a c.e. real in a which is not computable from ! with use n + log n.

This result is largely a corollary of the work in [4, Sections 4.2, 4.3] applied to the construction in the proof of Theo-
rem 1.2 (1).

1.2. Omega numbers and completeness

This paper concerns certain aspects of completeness of !, so it seems appropriate to discuss the completeness of !
a little more generally. The fact that ! computes all c.e. reals is referred to as the Turing-completeness of ! (with respect to
c.e. reals), and has been known since ! was first defined. Calude and Nies observed in [17] that there is a computable bound
on the oracle use in computations of c.e. reals and c.e. sets from !. The results of Section 1.1 give a sharp characterisation
of these computable bounds. It is a reasonable question as to whether !-numbers can be characterised as the complete
c.e. reals with respect to Turing reductions with appropriately bounded use. In terms of the strong reducibilities of classical
computability theory, this question has a negative answer. Figueira, Stephan, and Wu showed in [24], for example, that there
are two !-numbers which do not have the same truth-table degree. Stephan (see [4, Section 6] for a proof) showed that
given any !-number, there is another !-number which is not computable from the first with use n + O (1).

Putting this question aside, there are a number of characterisations of the !-numbers as the complete elements of the
set of c.e. reals with respect to certain (weak) reducibilities relating to algorithmic randomness. Downey, Hirschfeldt and
Laforte studied and compared these and other reducibilities in [20], and a good presentation of this study can also be found
in the monograph of Downey and Hirschfeldt [19, Chapter 9]. One of these reducibilities that pertains to the following
discussion is the rK reducibility, denoted by A ≤rK B which is the relation that K (A !n | B !n) = O (1) for all n. We note
that by Downey, Hirschfeldt and Laforte [20], this relation implies that A is computable in B , in the sense of Turing oracle
computability. The following fact highlights the correspondence between !-numbers and linearly complete c.e. sets. Here
K (! !n | H !g(n)) denotes the prefix-free complexity of ! !n relative to H !g(n) , and K (! !n | H !g(n)) = O (1) can be seen
as a nonuniform computation of ! from H (see Section 1.3 for definitions relating to complexity).

Theorem 1.6. Consider a 1-random c.e. real !, a c.e. set H, a computable function g and a right-c.e. function f such that
∑

i 2− f (i) is
finite.

(i) If K (! !n | H !g(n)) = O (1) then 2n = O (g).
(ii) If g = O

(
2n

)
and K (! !n+ f (n) | H !g(n)) = O (1) then H is linearly-complete.

(iii) If g = O (n) and K (! ! f (n) | H !g(n)) = O (1) then H is linearly-complete.
(iv) If H is linearly-complete then it computes ! (and any c.e. real) with use 2n+O(1) .

In order to understand this fact better, note that if ! is computed by a c.e. set H with computable use h, then we
have K (! !n | H !h(n)) = O (1) for all n. So the first clause of Theorem 1.6 says that the tightest use in a computation
of ! from a c.e. set is exponential, even when the computation is done non-uniformly. The fourth clause asserts that the
linearly-complete c.e. sets achieve this lower bound on the use in computations of !. In this sense, they can be viewed
as analogues of !. There are more facts supporting this suggestion. In [6], for example, it was shown that a c.e. set H is
linearly complete if and only if K (W !n | H !n) = O (1) for all n and all c.e. sets W . By the basic properties of Kolmogorov
complexity, prefix-free complexity in the previous statement and in Theorem 1.6 can be replaced by plain Kolmogorov
complexity (e.g. see [20]).

It is also instructive to compare clauses (ii) and (iii) of Theorem 1.6 with an older result of Solovay. For each n let Dn be
the set of strings of length at most n, in the domain of the universal prefix-free machine. Solovay [38] (see [19, Section 3.13])
showed that the cardinality of Dn is proportional to 2n−K (n) , that K (! !n | Dn+K (n)) = O (1) and that K (Dn | ! !n) = O (1).

We conclude this section with a brief discussion of some results from Tadaki [40] which came to our attention only
recently. Tadaki’s results are incomparable with those presented here, but relate to the results from this paper concerning
reductions between ! and c.e. sets (rather than c.e. reals). He considered the problem of how many bits of ! are needed
in order to compute the domain of the universal prefix-free machine U up to the strings of length n; and vice-versa, what
is the least number m such that, in general, we can compute the first n bits of ! from the domain of U restricted to the
strings of length at most m. Tadaki showed that, if we restrict the question to computable use-functions,

(a) the answer to the first question is given by the computable functions of the type n − f (n) such that
∑

n 2− f (n) is finite.
(b) the answer to the second question is given by the computable functions of the type n + f (n) such that

∑
n 2− f (n) is

finite.

G. Barmpalias et al. / Journal of Computer and System Sciences 82 (2016) 1283–1299 1287

These optimal results are quite pleasing, and were subsequently used by Tadaki [41] in order to obtain a statistical mechanics
interpretation of algorithmic information theory, which was further developed in [42,43]. The main difference here is that
the c.e. sets considered by Tadaki are the domains of universal prefix-free machines, and these are not linearly-complete
(a fact which is not hard to verify).

1.3. Preliminaries

We assume the reader is familiar with the basic concepts of Kolmogorov complexity and computability theory. We use
C(σ) and K (σ) to denote the plain and prefix-free Kolmogorov complexity of a string σ respectively. Moreover we use
C(σ | ρ), K (σ | ρ) to denote the relative plain and prefix-free complexities of σ with respect to ρ respectively. Recall that
A is 1-random if there exists a constant c such that K (A !n) ≥ n − c for all n. The cumulative work of Solovay [38], Calude,
Hertling, Khoussainov and Wang [16] and Kučera and Slaman [28] has shown that the 1-random c.e. reals are exactly the
halting probabilities of (optimal) universal machines. Most of this work revolves around a reducibility between c.e. reals that
was introduced in [38]. We say that a c.e. real α is Solovay reducible to c.e. real β if there are nondecreasing computable
rational approximations (αs), (βs) to α, β respectively, and a constant c such that α − αs ≤ c · (β − βs) for all s. Downey,
Hirschfeldt and Nies [21] showed that

α is Solovay reducible to β iff there are nondecreasing computable rational approximations
(αs), (βs) to α,β respectively, and a constant c such that αs+1 − αs ≤ c · (βs+1 − βs) for all s.

(1.3.1)

Moreover it follows from [38,16,28] that the 1-random c.e. reals are exactly the c.e. reals that are complete (i.e. they are
above all other c.e. reals) with respect to Solovay reducibility. In particular, if α is a 1-random c.e. real which is Solovay
reducible to another c.e. real β , then β is also 1-random. We use these facts in the proof of Theorem 1.3 in Section 2.3.
Without loss of generality, all c.e. reals considered in this paper belong to [0, 1]. The following convergence test will be
used throughout this paper.

Lemma 1.7 (Condensation). If f is a nonincreasing sequence of positive reals then the series
∑

i f (i) converges if and only if the series ∑
i

(
2i · f (2i)

)
converges. Moreover, if f is computable and the two sums converge, the first sum is 1-random if and only if the second

sum is 1-random.

Proof. The first part is a standard series convergence test known as the Cauchy condensation test. Its proof usually goes
along the lines of Oresme’s proof of the divergence of the harmonic series which shows that

∞∑

i=2t

f (i) ≤
∞∑

i=t

(
2i · f (2i)

)
= 2 ·

∞∑

i=t

(
2i−1 · f (2i)

)
≤ 2 ·

∞∑

i=2t−1

f (i) for all t ∈ N+.

The second part of the lemma follows from the above bounds, which show that the two sums are c.e. reals, each one
Solovay reducible to the other. So one is 1-random if and only if the other is. ✷

Algorithmic randomness for reals was originally defined in terms of effective statistical tests by Martin-Löf in [34]. We
assume that the reader is familiar with this classical definition. Another kind of test that can be used for the definition of
1-randomness is the Solovay test. A Solovay test is a uniform sequence (Ii) of '0

1 classes (often viewed as a uniformly c.e.
sequence of sets of binary strings) such that the sum of the measures of the sets Ii is finite. We say that a real passes a
Solovay test (Ii) if there are only finitely many indices i such that Ii contains a prefix of X . Solovay [38] showed that a real
is 1-random if and only if it passes all Solovay tests.

Some of the following proofs involve the construction of prefix-free machines. There are certain notions and tools as-
sociated with such constructions which are standard in the literature, and which we briefly review now. The weight of a
prefix-free set S of strings is defined to be the sum

∑
σ∈S 2−|σ | . The weight of a prefix-free machine M is defined to be

the weight of its domain. Prefix-free machines are most often built in terms of request sets. A request set L is a set of pairs
⟨ρ, ℓ⟩ where ρ is a string and ℓ is a positive integer. A ‘request’ ⟨ρ, ℓ⟩ represents the intention of describing ρ with a string
of length ℓ. We define the weight of the request ⟨ρ, ℓ⟩ to be 2−ℓ . We say that L is a bounded request set if the sum of the
weights of the requests in L is less than 1. The Kraft–Chaitin theorem (see e.g. [19, Section 2.6]) says that for every bounded
request set L which is c.e., there exists a prefix-free machine M with the property that for each ⟨ρ, ℓ⟩ ∈ L there exists a
string τ of length ℓ such that M(τ) = ρ . So the dynamic construction of a prefix-free machine can be reduced to a mere
description of a corresponding c.e. bounded request set.

For more background in algorithmic information theory and computability theory we refer to the standard monographs
[32,19,35]. Since we have included a number of citations to the unpublished manuscript of Solovay [38], we note that every
result in this manuscript has been included, with a proof, in the monograph by Downey and Hirschfeldt [19].

1288 G. Barmpalias et al. / Journal of Computer and System Sciences 82 (2016) 1283–1299

2. Omega and the computably enumerable sets

We start with the proof of Theorem 1.6 and continue with the proof of Theorem 1.3. The proof of the last clause
of Theorem 1.6 in Section 2.2 describes a compact coding of a c.e. real into a c.e. set, which will also be used in later
arguments in this paper.

2.1. Proof of Theorem 1.6, clauses (i) and (ii)

Recall the following theorem.

Theorem 1.6 (Clauses (i) and (ii)). Consider a 1-random c.e. real !, a c.e. set H, a computable function g and a right-c.e. function f
such that

∑
i 2− f (i) is finite.

(i) If K (! !n | H !g(n)) = O (1) then 2n = O (g).
(ii) If g = O

(
2n

)
and K (! !n+ f (n) | H !g(n)) = O (1) then H is linearly-complete.

For the first clause, it suffices to show that for each c.e. real α, each c.e. set H and each computable function g:

if K (α !n | H !g(n)) = O (1) and 2n ≠ O (g) then α is not 1-random.

Assuming the above properties regarding H , α and g , we construct a Martin-Löf test (V i) such that α ∈ ∩i V i . Let d be
a constant such that K (α !n | H !g(n)) < d for all n. Since 2n ≠ O (g), for each constant c there exists some n such that
g(n) < 2n−c . Let (ni) be an increasing sequence with g(ni) < 2ni−i−d for each i. We describe a construction enumerating the
sets Vk . We say that Vk requires attention at stage s + 1 if Ks+1(αs+1 !nk | Hs+1 !g(nk)) < d and either Vk[s] is empty or the
last string enumerated into Vk is not a prefix of αs+1. At each stage s +1 we pick the least k such that Vk requires attention
and enumerate αs+1 !nk into Vk . In order to see that (V i) is a Martin-Löf test, note that each time we enumerate into Vk ,
we are guaranteed a change in α !nk . Moreover, after at most 2d such consecutive enumerations, there must be a change
in H !g(nk) . This is true, because after each such enumeration, Vk can only require attention if the underlying universal
machine issues a new description of α !nk relative to H !g(nk) , of length less than d; moreover the underlying machine can
only issue at most 2d such descriptions as long as the approximation to H !g(nk) does not change. Since g(nk) < 2nk−k−d and
H is a c.e. set, there can be at most 2nk−k−d changes in H !g(nk) . It follows that there can be at most 2d · 2nk−k−d = 2nk−k

many enumerations into Vk , the last enumeration into this set being a prefix of α. Since each string in Vk has length nk ,
the measure of Vk is at most 2−k . So (Vk) is a Martin-Löf test with α ∈ ∩i V i , demonstrating that α is not 1-random.

For the second clause, let W be a c.e. set and assume the hypothesis of the second clause of the theorem. Since g =
O

(
2n

)
it suffices to show that for all but finitely many k, and for all i < 2k we can compute W (2k + i) uniformly from

H !g(k) . Let c be a constant such that K (! ! f (k)+k | H !g(k)) < c for all k. We enumerate a Solovay test (Ik) as follows. We
define the sets Ik(i) for each k ∈ N and i < 2k , and for each k we let Ik be the union of all Ik(i), i < 2k . In what follows,
when we write !s ! f (k)+k , it is to be understood that the value f (k) referred to, is in fact the approximation to f (k) at
stage s. At any stage s of the construction, for each k and each i < 2k , let mk(i) be the first stage ≤ s at which a string was
enumerated into Ik(i) if such a stage exists, and let mk(i) be undefined otherwise. We say that Ik(i) requires attention at
stage s if i < 2k , 2k + i ∈ W s , Ks(!s ! f (k)+k | Hs !g(k)) < c and the following two conditions hold:

• Hs !g(k)= Hmk(i) !g(k) or mk(i) is undefined;
• Ik = ∅ or the last string enumerated into Ik is not a prefix of !s .

We say that Ik requires attention at stage s if Ik(i) requires attention at stage s for some i < 2k .
At stage s + 1 let k be the least number such that Ik requires attention. Let i be the least number which is less than 2k

and such that Ik(i) requires attention, and enumerate !s+1 !k+ f (k) into Ik(i) (or do nothing if no Ik requires attention). This
concludes the enumeration of (Ik).

First we show that (Ik) is a Solovay test. Fix k. If s0 < s1 are two stages at which enumerations are made into Ik , we
have that !s0 !k+ f (k)≠ !s1 !k+ f (k) (if the approximation to f changes, then these are distinct strings). Now let i < 2k . If
s0 < s1 are two stages at which enumerations into Ik(i) are made then Ks0 (!s0 !k+ f (k) | Hs0 !g(k)) < c and Ks1 (!s1 !k+ f (k)

| Hs0 !g(k)) < c. So for each new enumeration into Ik(i), we have an additional description in the universal machine with
oracle Hmk(i) !g(k) (where mk(i) is the first stage where an enumeration occurred in Ik(i)) of length less than c. Since there
are at most 2c such descriptions, for each k and i < 2k there can be at most 2c enumerations into Ik(i). So the measure of
Ik(i) is at most 2c−k− f (k) . Hence the measure of Ik is at most 2c− f (k) . From our hypothesis concerning f , it follows that (Ik)
is a Solovay test.

Now we show that W is linearly reducible to H . Since g = O
(
2n

)
, it suffices to show that for all but finitely many k, if

i < 2k and 2k + i is enumerated into W at some stage s0, then there exists a stage s1 > s0 such that Hs0 !g(k)≠ Hs1 !g(k) .
Since ! is 1-random and each of the sets Ik(i) is a finite set of strings, there exist some k0 such that for each k > k0 and

G. Barmpalias et al. / Journal of Computer and System Sciences 82 (2016) 1283–1299 1289

each i < 2k the set Ik(i) does not contain any prefix of !. Now suppose that some number 2k + i with k > k0 and i < k is
enumerated into W at some stage s0, and towards a contradiction suppose that Hs0 !g(k)= H !g(k) . Then Ik(i) will require
attention at every sufficiently late stage s at which !s does not have a prefix in Ik . Eventually ! !k+ f (k) will be enumerated
into Ik(i), which contradicts the choice of k0. This concludes the proof that H is linearly-complete, and the proof of the
second clause.

2.2. Proof of Theorem 1.6, clauses (iii) and (iv)

Recall the following theorem.

Theorem 1.6 (Clauses (iii) and (iv)). Consider a 1-random c.e. real !, a c.e. set H, a computable function g and a right-c.e. function f
such that

∑
i 2− f (i) is finite.

(iii) If g = O (n) and K (! ! f (n) | H !g(n)) = O (1) then H is linearly-complete.
(iv) If H is linearly-complete then it computes ! (and any c.e. real) with use 2n+O(1) .

For clause (iii) the proof is similar to clause (ii). Let c be a constant such that g(n) ≤ c ·n and K (! ! f (n) | H !g(n)) < c for
all n. We enumerate a Solovay test (Ik) as follows. At any stage s of the construction, for each k let mk be the first stage ≤ s
at which a string was enumerated into Ik if such a stage exists, and let mk be undefined otherwise. We say that Ik requires
attention at stage s if k ∈ W s , Ks(!s ! f (k) | Hs !g(k)) < c, Hs !g(k)= Hmk !g(k) or mk is undefined, and:

Ik = ∅ or the last string enumerated in Ik is not a prefix of !s.

At stage s + 1 let k be the least number such that Ik requires attention and enumerate !s+1 ! f (k) into Ik (or do nothing if
no Ik requires attention). This concludes the enumeration of (Ik).

First we show that (Ik) is a Solovay test. If s0 < s1 are two stages at which enumerations into Ik are made, we have
Ks0 (!s0 ! f (k) | Hs0 !g(k)) < c, Ks1 (!s1 ! f (k) | Hs0 !g(k)) < c and !s0 ! f (k)≠ !s1 ! f (k) . Hence for each new enumeration
into Ik , we have an additional description in the universal machine with oracle Hmk !g(k) (where mk is the first stage where
an enumeration occurred in Ik) of length less than c. Since there are at most 2c such descriptions, for each k there can be
at most 2c enumerations into Ik . So the measure of Ik is at most 2c− f (k) . By our hypothesis concerning f it follows that
(Ik) is a Solovay test.

Now we show that W is linearly reducible to H . It suffices to show that for all but finitely many n, if n is enumerated
into W at some stage s0 then there exists a stage s1 > s0 such that Hs0 !g(n)≠ Hs1 !g(n) . Since ! is Martin-Löf random,
there exist some n0 such that for each n > n0 the set In does not contain any prefix of !. Suppose that some n > n0 is
enumerated into W at some stage s0, and towards a contradiction suppose that Hs0 !g(n)= H !g(n) . Then In will require
attention at every sufficiently late stage s at which !s does not have a prefix in In . Eventually ! ! f (n) will be enumerated
into In , which contradicts the choice of n0. This concludes the proof that H is linearly-complete, and the proof of the third
clause.

For clause (iv), let us start by examining how ! may be coded into a c.e. set. Given a c.e. real α, there is a computable
increasing sequence of rational numbers (αs) that converges to α. For each t ∈ N let:

pα(t) = |{s | αs(t) ≠ αs+1(t) ∧ αs+1(t) = 1}| ≤ 2t

σα(t) = 1pα(t) ∗ 02t−pα(t).

The c.e. real α can be coded into a c.e. set Xα as follows:

Xα = σα(0) ∗ σα(1) ∗ · · · (2.2.1)

Then clearly α is computable from Xα with use bounded by 2n , and Xα is computable from α with use bounded by
⌊log n⌋ + 1. From this coding, we can deduce the fourth clause of the theorem. Let α be a c.e. real and consider Xα as
above. Since H is linearly-complete, Xα !2n is uniformly computable from H !2n+O(1) . Since α !n is uniformly computable
from Xα !2n , it follows that it is also uniformly computable from H !2n+O(1) .

2.3. Proof of Theorem 1.3

Recall the following theorem.

Theorem 1.3. Let g be a computable function.

(1) If
∑

n 2−g(n) converges, then every c.e. set is computable from any !-number with use g.
(2) If

∑
n 2−g(n) diverges and g is nondecreasing, then no !-number can compute all c.e. sets with use g. In fact, in this case, no

linearly complete c.e. set can be computed by any c.e. real with use g.

1290 G. Barmpalias et al. / Journal of Computer and System Sciences 82 (2016) 1283–1299

For clause (1), let A be a c.e. set and let c be a constant such that
∑

i>c 2−g(i) < 1. We construct a prefix-free machine
N using the Kraft–Chaitin theorem as follows. At stage s + 1, for each n ∈ As+1 − As which is larger than c, we enumerate
an N-description of !s+1 !g(n) (chosen by the online Kraft–Chaitin algorithm) of length g(n). This completes the definition
of N . Note that the weight of the domain of N is at most

∑
n>c 2−g(n) < 1, so that the machine N is well defined by the

Kraft–Chaitin theorem. Since ! is 1-random, there exists some n0 > c such that for all n > n0 we have K N (! !g(n)) > g(n).
Hence if some n > n0 enters A at some stage s + 1, we have that !s+1 !g(n) is not a prefix of !. Since ! is a c.e. real, this
means that ! computes A with use g , which concludes the proof of clause (1) of Theorem 1.3.

We first prove clause (2) of Theorem 1.3 for the case when the linearly-compete set is the halting set with respect
to some Kolmogorov numbering. We do this because the proof of Theorem 1.4 is based on the same ideas. On the other
hand, the general case can easily be obtained with some modifications of the argument which we lay out at the end of
this section. So suppose that A is the halting problem with respect to a Kolmogorov numbering (Me) of Turing machines.
Let (*e, αe) be an effective list of all Turing functionals *e with use g and c.e. reals αe . This effective list comes with
nondecreasing computable rational approximations (αe[s]) to αe and effective enumerations *e[s] of *e , which are based
on the underlying universal machine. Also let U be the universal machine whose halting problem is A, and let f be a
computable function such that for each e the function n '→ f (e, n) is O (n) and such that U (f (e, n)) ≃ Me(n) for all e, n. By
definition, we have A = { f (e, n) | Me(n) ↓}. We will define a Turing machine M such that the following requirements are
met:

Re : A ≠ *
αe
e .

Note that M is not directly mentioned in the requirement Re , but is implicit in the definition of A. By the recursion
theorem we can assume given b such that M = Mb . During the construction of M we check the enumeration of A to ensure
that there does not exist any n with A(f (b, n)) = 1 and for which we have not yet defined M on argument n. If such an
n is found, then we terminate the construction of M (so that, in fact, no such n can be found at any stage for the correct
index b). It is also convenient to speed up the enumeration of A, so that whenever we define M on argument n, f (b, n) is
enumerated into A at the next stage.

Since
∑

i 2−g(i) = ∞, by Lemma 1.7 we also have
∑

n 2n−g(2n) = ∞. Let It = [2t − 1, 2t+1 − 1) so that |It | = 2t . Let (J c(e))
be a computable partition of N into consecutive intervals (i.e. such that J c(e) and J c′ (e′) are disjoint if e ̸= e′ or c ≠ c′),
such that:

∑

t∈ Jc(e)

2(t+c)−g(2(t+c)) > 2c for each e, c. (2.3.1)

Such a partition exists by the hypothesis for g and Lemma 1.7. Let M[s] denote the machine M as defined by the end
of stage s, i.e. M(n)[s] ↓ precisely if an axiom to that effect is enumerated prior to the end of stage s. For each pair c,
e let jc,e be the largest number j such that there exists t ∈ J c(e) with j ∈ It . We say that Re requires attention with
respect to (c, t) at stage s + 1, if t is the least number in J c(e) such that M(i)[s] is not defined for some i ∈ It , and if also
*

αe
e (j)[s + 1] = A(j)[s + 1] for all j ≤ e · jc,e . We say Re(c) requires attention with respect to t at some stage if Re requires

attention at that stage with respect to (c, t). Let ⟨c, e⟩ be an effective bijection between N × N and N. The definition of M
is as follows. At stage s + 1 we look for the least ⟨c, e⟩ such that Re(c) requires attention. If there exists no such ⟨c, e⟩ < s,
we go to the next stage. Otherwise let ⟨c, e⟩ be this tuple and let t be the least number such that Re(c) requires attention
with respect to t . Let k be the least element of It such that Ms(k) is undefined and define Ms+1(k) = 0. We say that Re(c)
received attention with respect to t at stage s + 1. This concludes the definition of M .

It remains to verify that each Re is met. Towards a contradiction, suppose that Re is not met. Let b be an index of the
machine M and fix c to be a constant such that f (b, n) ≤ 2c−1 · n for all n. By the padding lemma we can assume that
e > 2c−1, which means that if Re(c) requires attention at stage s + 1 then:

*
αe
e (f (b, i))[s + 1] ↓= A(f (b, i))[s + 1] for all i ∈ It and all t ∈ Jc(e). (2.3.2)

Fix t ∈ J c(e) and let s0 < s1 be stages at which Re(c) receives attention with respect to t . Since all elements of It are less
than 2t+1, g is nondecreasing, and since we define M on i ∈ It at stage s0, causing f (b, i) to be enumerated into A, it
follows that we must see an increase in αe !g(2c−1·2t+1)= αe !g(2t+c) between stages s0 and s1. If Re is not satisfied, as we
have assumed, then for each t ∈ J c(e) it will receive attention |It | = 2t many times, causing a total increase in αe !g(2t+c) of
2t−g(2t+c) . Summing over all t ∈ J c(e) this means that ultimately:

αe ≥
∑

t∈ Jc(e)

2t−g(2t+c) = 2−c ·
∑

t∈ Jc(e)

2t+c−g(2t+c) > 2−c · 2c = 1.

This gives the required contradiction, since αe ≤ 1. We can conclude that each Re is met, which completes the proof of
clause (2) of Theorem 1.3 for the case of halting sets.

For the more general case, assume that A is merely a linearly-complete c.e. set. Then for all c.e. sets W we have
K (W !n | A !n) = O (1) (see [6]). As before, let (αe) be an effective enumeration of all c.e. reals in [0, 1], with nondecreasing
rational computable approximations (ae[s]) respectively. We want to show that for each e, the real αe does not compute

G. Barmpalias et al. / Journal of Computer and System Sciences 82 (2016) 1283–1299 1291

A with oracle-use bounded above by g . If αe did compute A in this way, then we would have K (A !n | αe !g(n)) = O (1)
for all n, and since A is linearly complete, it follows from the remark above that for each c.e. set W we would have
K (W !2n | αe !g(2n)) = O (1) for all n. So it suffices to enumerate a c.e. set W such that the following conditions are met for
each e, c:

Re(c) : If for all n, K (W !2n | αe !g(2n)) ≤ c, then αe > 1.

As before we let It = [2t − 1, 2t+1 − 1) for each t , so that |It | = 2t and all elements of It are less than 2t+1. We also define
an appropriate version of the intervals J c(e) as follows. We consider a computable partition of N into finite intervals J c(e)
for e, c ∈ N such that

∑

t∈ Jc(e)

2t−g(2t+1) > 2c for each e, c ∈ N. (2.3.3)

As before, such a partition of N exists by Lemma 1.7. We say that Re(c) requires attention with respect to t ∈ J c(e) at stage
s + 1, if It − W s ≠ ∅ and if Ks+1(W s !2t′+1 | αe[s + 1] !g(2t′+1)) ≤ c for all t′ ∈ J c(e). We say that Re(c) requires attention
at stage s + 1 if it requires attention with respect to some t ∈ J c(e). The enumeration of W takes place as follows. At stage
s + 1 we look for the least ⟨c, e⟩ such that Re(c) requires attention. If there exists no such ⟨c, e⟩ < s, we go to the next
stage. Otherwise let ⟨c, e⟩ be this tuple and let t be the least number such that Re(c) requires attention with respect to t .
Let k be the least element of It − W s and enumerate k into W s+1. We say that Re(c) received attention with respect to t
at stage s + 1. This concludes the enumeration of W .

It remains to verify that each Re is met. Towards a contradiction, suppose that Re is not met. Fix t ∈ J c(e) and for each
i ≤ 2t−c let si be the stage where Re(c) receives attention with respect to t for the (2c · i)-th time. Since whenever Re(c)
requires attention with respect to t at some stage s +1 we have Ks+1(W s !2t+1 | αe[s +1] !g(2t+1)) ≤ c and there are at most
2c many descriptions of length c, between each si and si+1 we must see an increase in αe !g(2t+1) . If Re is not satisfied, as
we have assumed, then for each t ∈ J c(e) it will receive attention |It | = 2t many times, meaning an increase in αe !g(2t+1)

of at least 2t−c−g(2t+1) . Summing over all t ∈ J c(e) we have that

αe ≥
∑

t∈ Jc(e)

2t−c−g(2t+1) = 2−c ·
∑

t∈ Jc(e)

2t−g(2t+1) > 2−c · 2c = 1.

This is the required contradiction, since α ≤ 1. We conclude that each Re(c) is met, which completes the proof of clause (2).

2.4. Proof of Theorem 1.4

Recall the following theorem.

Theorem 1.4. Let g be a nondecreasing computable function such that
∑

n 2−g(n) converges to a 1-random real. Then a c.e. real is
1-random if and only if it computes the halting problem with respect to a Kolmogorov numbering with use g.

According to the hypothesis of Theorem 1.4 and Lemma 1.7 we have that
∑

i 2i−g(2i) is 1-random. Suppose that A is the
halting problem with respect to a Kolmogorov numbering (Me) of Turing machines, and α is a c.e. real which computes
A with use g . Let U be the universal machine whose halting problem is A, and let f be a computable function such
that n '→ f (e, n) is O (n) and such that U (f (e, n)) ≃ Me(n) for all e, n. By definition, we have A = { f (e, n) | Me(n) ↓}.
Moreover let * be a Turing functional with oracle use uniformly bounded by g(n) on each argument n, such that A = *α .
Fix computable enumerations (*s), (As) of *, A respectively. The proof proceeds much as in the first proof we gave for
clause (2) of Theorem 1.3 previously. Once again we construct a machine M , and assume by the recursion theorem that we
are given b such that M = Mb . During the construction of M we check the enumeration of A as before, so as to ensure
that there is no n for which f (b, n) is enumerated into A but for which we have not yet defined M on argument n, etc.
The machine M that we construct will be very simple, and it is the timing of enumerations into the domain of M which
is key. Fix c to be a constant such that f (b, n) ≤ 2c−1 · n for all n. Again we define It = [2t − 1, 2t+1 − 1) so that |It | = 2t .
This time, however, we say that It requires attention at stage s + 1, if M(i)[s] is not defined for some i ∈ It , and if also
*α(j)[s + 1] = A(j)[s + 1] for all j ≤ 2c−12t+1 = 2c+t . For the least t which requires attention at stage s + 1 (if any), we find
the least i ∈ It such that M(i)[s] ↑ and we define M(i) ↓= 0.

The rough idea is now to define a sequence of stages st such that if we define γt = α[st] and δt = ∑t−1
n=0 2n+c−g(2n+c) ,

then

2c · (γt+1 − γt) ≥ (δt+1 − δt). (2.4.1)

According to the characterisation (1.3.1) of Solovay reducibility, this means that the limit δ of (δt) is Solovay reducible to the
limit α of (γt). Since δ is 1-random, it then follows that α is 1-random, as required. We define s0 = 0 and, for each t > 0,
we define st to be the first stage at which It receives attention. Each time It receives attention, we must see an increase in

1292 G. Barmpalias et al. / Journal of Computer and System Sciences 82 (2016) 1283–1299

α !g(2c−1·2t+1)= α !g(2t+c) . Since It will receive attention |It | = 2t many times, this means a total increase in α !g(2t+c) of at
least 2t−g(2t+c) = 2−c2t+c−g(2t+c) . We shall therefore have that (2.4.1) holds, if we define γt = α !g(2t+c) [st].

3. Computing c.e. reals from Omega numbers

This section is devoted to the proof of Theorem 1.2. In Section 3.1 we derive the first part of this result from Theorem 1.3,
while Section 3.2 contains a more sophisticated argument for the proof of the second part.

3.1. Proof of Theorem 1.2, clause (1)

Recall the following theorem.

Theorem 1.2 (Clause (1)). Let h be computable. If
∑

n 2n−h(n) converges, then for any !-number ! and any c.e. real α, α can be
computed from ! with use bounded by h.

Let ! be an omega number, let α be a c.e. real and let g = h(n) − n be as in the statement of the first clause. By the
proof of clause (iv) of Theorem 1.6 in Section 2.2, there exists a c.e. set A which computes α with use 2n . By Lemma 1.7

∑

i

2−g(i) < ∞ ⇒
∑

i

2i · 2−(log 2i+g(log 2i)) < ∞ ⇒
∑

i

2−(log i+g(log i)) < ∞ (3.1.2)

so by Theorem 1.3 the set A is computable from ! with use bounded by log n + g(log n). By composing the two reductions
we conclude that α is computable from ! with use bounded by log 2n + g(log 2n) i.e. n + g(n).

We can use a more direct argument to prove the same fact, without the hypothesis that h(n) − n is non-decreasing. Let
g , !, α be as above and let (αs), (!s) be computable nondecreasing dyadic rational approximations that converge to α, !
respectively. We construct a Solovay test along with a c.e. set I , as follows. At each stage s + 1 we consider the least n
such that αs(n) ̸= αs+1(n), if such exists. If there exists such an n we define σs = !s+1 !n+g(n) and enumerate s into I . We
verify that the set of strings σs , s ∈ I is a Solovay test. Note that for every n, the number of stages s such that n is the
least number with the property that αs(n) ̸= αs+1(n) is bounded above by the number of times that αs(n) can change from
0 to 1 in this monotone approximation to α. Hence this number is bounded above by 2n . So:

∑

s∈I

2−|σs| ≤
∑

n

2n · 2−g(n)−n =
∑

n

2−g(n) < ∞.

Since ! is Martin-Löf random, there exists some s0 such that none of the strings σs for s ∈ I and s > s0 are prefixes of !.
This means that whenever our construction enumerates s in I because we find n with αs(n) ̸= αs+1(n), there exists some
later stage where the approximation to ! !n+g(n) changes. Hence with oracle ! !s+g(s) we can uniformly compute α(n), so
α is computable from ! with oracle use h.

3.2. Proof of Theorem 1.2, clause (2)

Recall the following theorem.

Theorem 1.2 (Clause (2)). Let h be computable and such that h(n) − n is non-decreasing. If
∑

n 2n−h(n) diverges then no !-number
can compute all c.e. reals with use h + O (1). In fact, in this case there exist two c.e. reals such that no c.e. real can compute both of
them with use h + O (1).

Given a computable function h such that h(n) − n is non-decreasing and
∑

i 2n−h(n) diverges, we need to construct two
c.e. reals such that no c.e. real can compute both of them with use h + O (1). Our presentation will be neater, however, if
we consider the following elementary fact, which allows one to ignore the constants in the previous statement.

Lemma 3.1 (Space lemma). If g is computable, non-decreasing and
∑

n 2−g(n) = ∞ then there exists a computable non-decreasing
function f such that limn(f (n) − g(n)) = ∞ and

∑
n 2− f (n) = ∞.

Proof. Consider a computable increasing sequence (ni) such that n0 = 0 and
∑

n∈Ik

2−g(n) > 2k for all k

where Ik = [nk, nk+1). Then for each k and each i ∈ [nk, nk+1) define f (i) = g(i) + k. Then

G. Barmpalias et al. / Journal of Computer and System Sciences 82 (2016) 1283–1299 1293

∑

n

2− f (n) ≥
∑

k

⎛

⎝
∑

n∈Ik

2− f (n)

⎞

⎠ =
∑

k

⎛

⎝2−k ·
∑

n∈Ik

2−g(n)

⎞

⎠ ≥
∑

k

(
2−k · 2k

)
= ∞

which concludes the proof. ✷

By Lemma 3.1, for the proof of the second clause of Theorem 1.2 it suffices to show that, given a computable non-
decreasing function h with

∑
i 2n−h(n) = ∞, there exist two c.e. reals such that no c.e. real can compute both of them with

use h. We need to construct two c.e. reals α, β such the requirement

R(*,-,γ) : α ≠ *γ ∨ β ≠ -γ (3.2.1)

is met for every triple (*, -, γ) such that *, - are Turing functionals with use h and γ is a c.e. real. For the simple case
where h(n) = n + O (1), this was done by Yu and Ding in [23], and a simplification of their argument appeared in [9]. The
underlying method for this type of argument involves an amplification game, which we discuss in Section 3.2.1. Then in
Section 3.2.2 we build on these ideas in order to produce a more sophisticated argument which deals with an arbitrary
choice of h satisfying the hypothesis of the theorem.

3.2.1. Amplification games
The reals γ in requirements (3.2.1) will be given with a non-decreasing computable rational approximation (γs). Our

task is to define suitable computable approximations (αs), (βs) to α, β respectively, so that (3.2.1) is met. The idea is that
if (the approximation to) α !n changes at a stage where *γ is defined to be an extension of (the previous version of) α !n ,
then either α ≠ *γ or (the approximation to) γ !h(n) needs to change at a later stage (and similarly for β). This gives us
a way to drive γ to larger and larger values, if *, - insist on mapping the current approximations of γ to the current
approximations of α, β respectively.

In order to elaborate on this approach, consider the following game between two players, which monotonically approx-
imate two c.e. reals α, γ respectively. Each of these numbers has some initial value, and during the stages of the game
values can only increase. If α increases and i is the leftmost position where an α-digit change occurs, then γ has to in-
crease in such a way that some γ -digit at a position ≤ h(i) changes. This game describes a Turing computation of α from
γ with use h. If γ has to code two reals α, β then we get a similar game (where, say, at each stage only one of α, β can
change). In order to block one of the reductions in (3.2.1) the idea is to devise a strategy which forces γ to either stop
computing α, β in this way, or else grow to exceed the interval (0, 1) to which it is assumed to belong.

It turns out that in such games, there is a best strategy for γ , in the sense that it causes the least possible increases
in γ while responding to the requests of the opponent(s). We say that γ follows the least effort strategy if at each stage it
increases by the least amount needed in order to satisfy the requirements of the game.

Lemma 3.2 (Least effort strategy). In a game where γ has to follow instructions of the type ‘change a digit at position ≤ n’, the least
effort strategy is a best strategy for γ . In other words, if a different strategy produces γ ′ then at each stage s of the game γs ≤ γ ′

s .

Proof. We use induction on the stages s. We have that γ0 ≤ γ ′
0. If γs = γ ′

s then it is clear from the definition of the least
effort strategy that the induction hypothesis will hold at stage s + 1. So suppose otherwise. Then γs < γ ′

s so that there will
be a position n such that 0 = γs(n) < γ ′

s (n) = 1 and γs ! n = γ ′
s ! n. Suppose that γ , γ ′ are forced to change at a position ≤ t

at stage s + 1. If t < n it is clear that γs+1 ≤ γ ′
s+1. Otherwise the leftmost change γ can be forced to make is at position n.

Once again γs+1 ≤ γ ′
s+1. ✷

Lemma 3.2 allows us to assume a fixed strategy for the opponent approximating γ , which reduces our analysis to
the assessment of a deterministic process, once we specify our strategy for the requests that the approximations to α, β
generate. The following observation is also useful in our analysis.

Lemma 3.3 (Accumulation). Suppose that in some game (e.g. like the above) γ has to follow instructions of the type ‘change a digit at
position ≤ n’. Although γ0 = 0, some γ ′ plays the same game while starting with γ ′

0 = σ for a finite binary expansion σ . If γ and γ ′

both use the least effort strategy and the sequence of instructions only ever demands change at positions > |σ | then γ ′
s = γs + σ at

every stage s.

Proof. By induction on s. For s = 0 the result is obvious. Suppose that the induction hypothesis holds at stage s. Then
γ ′

s , γs have the same expansions after position |σ |. At s + 1, some demand for a change at some position > |σ | appears and
since γ , γ ′ look the same on these positions, γ ′

s will need to increase by the same amount that γs needs to increase. So
γ ′

s+1 = γs+1 + σ as required. ✷

We are now ready to describe the strategy for the approximation of α, β restricted to an interval (t − n, t]. This strategy
automatically induces a deterministic response from γ according to the least effort strategy.

1294 G. Barmpalias et al. / Journal of Computer and System Sciences 82 (2016) 1283–1299

Definition 3.4. The h-load process in (t − n, t] with (α, β, γ) is the process which starts with α0 = β0 = γ0 = 0, and at each
stage 2−t is added alternately in α and β . Moreover at each stage s + 1, if k is the least number such that αs+1 !k≠ αs !k or
βs+1 !k≠ βs !k , we add to γ the least amount which can change γ !h(k) .

In more detail, the h-load process in (t −n, t] with (α, β, γ) is defined by the following instructions. Assume that α, β , γ
have initial value 0. Repeat the following instructions until α(i) = β(i) = 1 for all i ∈ (t − n, t].

(1) If s odd then, let α = α + 2−t and let k equal the leftmost position where a change occurs in α. Also add to γ the least
amount which causes a change in γ !h(k) .

(2) If s even, let β = β + 2−t and let k equal the leftmost position where a change occurs in β . Also add to γ the least
amount which causes a change in γ !h(k) .

It is not hard to see that the above procedure describes how γ evolves when it tries to code α, β via Turing reductions
with use h and it uses the least effort strategy. Player γ follows the least effort strategy when it increases by the least amount
which can rectify the functionals holding its computations of α and β . Note that in a realistic construction, the steps of the
above strategy are supposed to happen at stages where γ currently computes the first t + 1 bits of both α, β via *, -
respectively.

The following lemma says that in the special case where h(n) = n + O (1), the h-load process is successful at forcing γ
to grow significantly.

Lemma 3.5 (Atomic attack). Let n > 0 and h(x) = x + c for some constant c. For any k > 0 the h-load process in (k, k + n] with
(α, β, γ) ends with γ = n · 2−k−c .

Proof. By induction: for n = 1 the result is obvious. Assume that the result holds for n. Now pick k > 0 and consider the
attack using (k −1, k +n]. It is clear that up to a stage s0 this will be identical to the procedure with attack interval (k, k +n].
By the induction hypothesis γs0 = n2−k−c and α(i) = β(i) = 1 for all i ∈ (k, k + n], while α(k) = β(k) = 0. According to the
next step α changes at position k and this forces γ to increase by 2−k−c since γ has no 1s to the right of position k + c.
Then β does the same and since γ still has no 1s to the right of position k +c, γ has to increase by 2−k−c once again. So far

γ = n2−k−c + 2−k−c + 2−k−c = n2−k−c + 2−(k−1)−c

and α(i) = β(i) = 0 for all i ∈ (k, k + n] while α(k) = β(k) = 1. By applying the induction hypothesis again together with
Lemma 3.3, the further increase of γ will be exactly n2−k−c . So

γ = n2−k−c + 2−(k−1)−c + n2−k−c = (n + 1) · 2−(k−1)−c

as required. ✷

The analysis we just presented is sufficient for a construction of α, β which proves the second clause of Theorem 1.2 for
the specific case that h(n) = n + O (1). One only has to assign attack intervals to different versions of requirement (3.2.1)
and implement the h-load process in a priority fashion, gradually satisfying all conditions. In the next section we build on
these ideas in order to deal with the general case for h, and in Section 3.2.3 we give the formal construction of α, β .

3.2.2. Generalised amplification games
We wish to obtain a version of Lemma 3.5 which does not depend on a fixed choice of h. For ease of notation, let

g(n) = h(n) − n and assume that g is non-decreasing.
It is tempting to think that perhaps, in this general case, the h-load process in (k, k + n] with (α, β, γ) ends up with

γ = 2−k ·
∑

i∈(k,k+n]
2−g(i) (false amplification lower bound). (3.2.2)

With a few simple examples, the reader can be convinced that this is not the case. Luckily, the h-load process does give
a usable amplification effect, but in order to obtain the factor in this amplification we need to calibrate the divergence of
the series

∑
i 2−g(i) , by viewing g as a step-function.

Definition 3.6 (Signature of a non-decreasing function). Let g : N → N be a non-decreasing function. The signature of g is a
(finite or infinite) sequence (c j, I j) of pairs of numbers c j and intervals I j (for j ≥ 0), such that (I j) is a partition of N,
g(x) = c j for all x ∈ I j and all j, and c j > c j′ for j > j′ . The length of the sequence (c j, I j) is called the length of the
signature of g .

Note that if (c j, I j) is the signature of g then
∑

i 2−g(i) = ∑
j |I j| · 2−c j , where in the latter sum the indices run over the

length of the sequence (c j, I j). More generally, if J is an interval of numbers which are less than the length of the signature

G. Barmpalias et al. / Journal of Computer and System Sciences 82 (2016) 1283–1299 1295

of g we have
∑

i∈I 2−g(i) = ∑
j∈ J |I j | · 2−c j where I = ∪ j∈ J I j . We define a truncation operation that applies to such partial

sums, in order to replace the false amplification lower bound (3.2.2) with a correct lower bound.

Definition 3.7 (Truncation). Given a real number x ∈ (0, 1) and an increasing sequence (c j), for each t let

T (x, ct) =
∑

i≤t

ni · 2−ci where x = n0 · 2−c0 + n1 · 2−c1 + · · · =
∑

i

ni · 2−ci

is the unique representation of x as a sum of multiples of 2−c j such that ni+1 · 2−ci+1 < 2−ci for all i.

We now define a sequence of truncated sums that can be used in replacing the false lower bound (3.2.2) with a valid
one. These quantities depend on the sequence (c j, I j), which in turn depends on the function g .

Definition 3.8 (Truncated sums). Given the finite or infinite sequence (c j, I j) and k such that c j and I j are defined, the
sequence of truncated sums with respect to k is defined inductively as follows (i < k):

Sk(0) = T (|Ik| · 2−ck , ck−1)

Sk(i) = T (|Ik−i | · 2−ck−i + Sk(i − 1), ck−i−1) for i > 0.

Before we show that the h-load strategy with (α, β, γ) forces γ to grow to a suitable truncated sum, we show that
the truncated sums grow appropriately, assuming that

∑
i 2−g(i) is unbounded. Note that for increasing i, the sum Sk(i)

corresponds to later stages of the h-load strategy, and intervals Ik−i which are closer to the decimal point. This explains the
decreasing indices in the above definition and the following lemma.

Lemma 3.9 (Lower bounds on truncated sums). For each t < k we have Sk(t) ≥
∑

i≤t |Ik−i | · 2−ck−i − 1.

Proof. Since
∑

i∈(c0,ck] 2−i < 1 it suffices to show that for each t < k we have
∑

i≤t

|Ik−i | · 2−ck−i ≤ Sk(t) +
∑

i∈(ck−t−1,ck]
2−i. (3.2.3)

We use finite induction on t < k. For t = 0, we have |Ik| · 2−ck − Sk(0) ≤ ∑
i∈(ck−1,ck] 2−i . Now inductively assume that (3.2.3)

holds for some t such that t < k − 1. Then using the induction hypothesis we have:
∑

i≤t+1

|Ik−i | · 2−ck−i =
∑

i≤t

|Ik−i| · 2−ck−i + |Ik−t−1| · 2−ck−t−1 ≤ Sk(t) +
∑

i∈(ck−t−1,ck]
2−i + |Ik−t−1| · 2−ck−t−1 .

But Sk(t) + |Ik−t−1| · 2−ck−t−1 is clearly bounded above by T (Sk(t) + |Ik−t−1| · 2−ck−t−1 , ck−t−2) +
∑

i∈(ck−t−2,ck−t−1] 2−i . So:
∑

i≤t+1

|Ik−i | · 2−ck−i ≤ T (Sk(t) + |Ik−t−1| · 2−ck−t−1 , ck−t−2) +
∑

i∈(ck−t−2,ck]
2−i = Sk(t + 1) +

∑

i∈(ck−t−2,ck]
2−i,

which concludes the induction step and the proof. ✷

Now, in general, the signature of g may be finite or infinite. The case in which this signature is finite, however, corre-
sponds to the situation h(n) = n + O (1), which was previously dealt with by Yu and Ding in [23], as discussed earlier. For
ease of notation, we therefore assume from now on that the signature of g is infinite.

Suppose that we apply the h-load process in I = ⋃
j∈[k−t,k] I j . Then we want to show that γ will be larger than 2−m · Sk(t)

by the end of the process, where m is the least element of I . We will derive this (see Corollary 3.11) from the following
more general result, which can be proved by induction. We note that in (3.2.5), in the trivial case where t = 0 we let
Sk(t − 1) := 0.

Lemma 3.10. Let g : N → N be a non-decreasing computable function with signature (c j, I j) (of infinite length), let h(x) = x + g(x)
and suppose t ≤ k. If m is either inside Ik−t or is the largest number which is less than all numbers in Ik−t , then the final value of γ
after the h-load process with (α, β, γ) in the interval

(m,max Ik−t] ∪ (
⋃

i∈(k−t,k]
Ii) (3.2.4)

has the property that

T (2m · γ , ck−t) = Sk(t − 1) + (max Ik−t − m) · 2−ck−t . (3.2.5)

1296 G. Barmpalias et al. / Journal of Computer and System Sciences 82 (2016) 1283–1299

Proof. We use finite induction on the numbers t ≤ k and the numbers m in Ik−t ∪ {min Ik−t − 1}. For the case when t = 0,
the h-load process occurs in the interval (m, max Ik], where m is either min Ik − 1 or any number in Ik . In this case, by
Lemma 3.5 we have T (2m · γ , ck) = (max Ik − m) · 2−ck . Therefore in this case (3.2.5) holds.

Now consider some t > 0 (and, of course, t ≤ k) and any m ∈ [min Ik−t − 1, max Ik−t), and inductively assume that when
the attack occurs in the interval

(m + 1,max Ik−t] ∪ (
⋃

i∈(k−t,k]
Ii) (3.2.6)

the final value of γ satisfies

T (2m+1 · γ , ck−t) = Sk(t − 1) + (max Ik−t − m − 1) · 2−ck−t . (3.2.7)

Note that this conclusion follows from the induction hypothesis, even in the case that m = max Ik−t − 1, since then the
induction hypothesis gives:

T (2m+1 · γ , ck−(t−1)) = Sk(t − 2) + |Ik−(t−1)| · 2−ck−(t−1) . (3.2.8)

Now if we let the r.h.s. equal δ, then by definition T (δ, ck−t) = Sk(t − 1), giving (3.2.7), as required.
There are two qualitatively different cases regarding the value of m + 1. The first one is when m + 1 = max Ik−t , which

means that m + 1 is the first number in the latest interval Ik−t . The other case is when m + 1 < max Ik−t and m + 1 ≥
min Ik−t . What is special in the first case is that half-way through the h-load process in the interval (3.2.4), when α(m + 1)
changes, this is the first time that some α(i) change requires γ to change on digit i + ck−t (or before that). All previous
requests on γ required a change at i + ck−t+s for s > 0. In other words, the case m + 1 = max Ik−t is special because it
is when we cross into a new interval. Despite this apparent difference between the two cases, they can be dealt with
uniformly, as we now show.

The attack on the interval (3.2.4) can be partitioned into three phases. Let ℓ be the maximum of the interval (3.2.4).
Recall that each stage of this attack consists of adding 2−ℓ alternately to α and β . The first phase of the attack consists of
those stages up to the point where α(m + 1) = β(m + 1) = 0 and α(i) = β(i) = 1 for all i in the interval (3.2.6). According to
the induction hypothesis, at the end of the first phase of the attack (3.2.7) holds. By the definition of Sk(t − 1), this number
is an integer multiple of 2−ck−t . At the next stage of the attack, α(m + 1) will turn from 0 to 1, forcing γ to change at
position m + 1 + ck−t or higher. This means that T (γ , m + 1 + ck−t) will increase by 2−m−1−ck−t , because it does not have
any 1s after position m + 1 + ck−t . In other words, T (2m+1 · γ , ck−t) will increase by 2−ck−t . Then β(m + 1) will turn from 0
to 1, forcing γ to change again at position m + 1 + ck−t or higher. This means that T (2m+1 ·γ , ck−t) will increase by another
2−ck−t . The latter two stages make up the second phase of the attack. The third and final phase consists of all remaining
stages of the attack. At the end of the second phase T (2m+1 · γ , ck−t) has increased by

2 · 2−ck−t + Sk(t − 1) + (max Ik−t − m − 1) · 2−ck−t

compared to its initial value (which was 0). By applying the induction hypothesis and the accumulation lemma (Lemma 3.3),
at the end of the attack T (2m+1 · γ , ck−t) then equals:

2 · 2−ck−t + 2 · (Sk(t − 1) + (max Ik−t − m − 1) · 2−ck−t) = 2 · (Sk(t − 1) + (max Ik−t − m) · 2−ck−t).

By definition Sk(t − 1) is an integer multiple of 2−ck−t . The equation above therefore establishes (3.2.5) as required, since if
T (2m+1 ·α, c) = 2 · C where C is an integer multiple of 2−c , then T (2m ·α, c) = C . This concludes the induction step and the
proof of the lemma. ✷

The main construction employs h-load processes in unions of consecutive intervals I j from the signature of g . So we
only need the following special case of Lemma 3.10.

Corollary 3.11 (Lower bound). Let g : N → N be a non-decreasing computable function with infinite signature (c j, I j), and let h(x) =
x + g(x). The final value of γ after the h-load process with (α, β, γ) in the interval I = ⋃

j∈[k−t,k] I j is at least 2−m · Sk(t), where m
is the largest number less than all elements of I .

Proof. Since m is the largest number which is less than all numbers in Ik−t , we have |Ik−t | = max Ik−t − m, so by the
definition of the reduced sums and Lemma 3.10 we get

T (2m · γ , ck−t) = Sk(t − 1) + |Ik−t | · 2−ck−t

so

T (2m · γ , ck−t−1) ≥ T (T (2m · γ , ck−t), ck−t−1) = T (Sk(t − 1) + |Ik−t | · 2−ck−t , ck−t−1) = Sk(t),

which means that γ ≥ 2−m · Sk(t). ✷

G. Barmpalias et al. / Journal of Computer and System Sciences 82 (2016) 1283–1299 1297

We are ready to describe an explicit construction of two reals α, β establishing the second clause of Theorem 1.2 for the
(remaining) case that g has infinite signature.

3.2.3. Construction of the two reals and verification
Let g be a non-decreasing computable function with infinite signature such that

∑
i 2−g(i) = ∞, and let h(x) = x + g(x).

Let (*e, -e, γe) be an effective enumeration of all triples of Turing functionals *e , -e , and c.e. reals γe . According to the
discussion at the beginning of Section 3.2, for the proof of the second clause of Theorem 1.2, it suffices to construct two c.e.
reals α, β such that the following requirements are met.

Re : α ≠ *
γe
e ∨ β ≠ -

γe
e . (3.2.9)

Let (c j, I j) be as specified in Definition 3.6. The construction consists of assigning appropriate intervals Je to the require-
ments Re and implementing the h-load process with (α, β, γe) in Je independently for each e, in a priority fashion. We
start with the definition of the intervals Je , which is informed by the lower bound established in Corollary 3.11. We define
a computable increasing sequence (n j) inductively and define:

Je =
⋃

j∈(ne,ne+1]
I j.

Let n0 = 1. Given ne , let ne+1 be the least number which is greater than ne and such that if m is the largest number in Ine

then:

2−m · Sne+1(ne+1 − ne) > 1.

According to our hypothesis concerning g and Lemma 3.9, such a number ne+1 exists, so the definition of (n j) is sound.
Fix a universal enumeration with respect to which we can approximate the Turing functionals *e , -e and the c.e. reals γe .
The suffix ‘[s]’ on a formal expression means the approximation of the expression at stage s of the universal enumeration.
The stages of the construction are the stages of the universal enumeration. Recall from Definition 3.4 that each step in the
h-load process on Je consists of adding 2−ne+1 alternately to α and β . According to this process, we will only allow Re to
act at most 2ne+1−ne − 1 times for each of α, β . We say that strategy Re is active at stage s if:

(a) α(t)[s] = *
γe
e (t)[s] and β(t)[s] = -

γe
e (t)[s] for all t ∈ ∪i≤e J i .

(b) strategy Re has acted less than 2 · (2ne+1−ne − 1) many times in previous stages.

Construction At each stage s, if there exists no e such that Re is active, then go to the next stage. Otherwise, let e be the
least such. We say that s is an ‘e-stage’. If there has not been a previous e-stage, or if β was increased at the most recent
e-stage, then add 2−ne+1 to α and say that Re acts on α at stage s. Otherwise add 2−ne+1 to β and say that Re acts on β .
Go to the next stage.

We now verify that the construction produces approximations to reals α, β such that requirement Re is met for each e.
Note that Re is only allowed to act at most 2ne+1−ne − 1 times for each of α, β . This means that no action of Re can change
a digit of α or β which is outside Je . In particular, the approximations to α and β that are defined in the construction
converge to two reals in [0, 1].

Finally, we show that for each e, requirement Re is met and is active at only finitely many stages. Inductively suppose
that this is the case for Ri , i < e. Note that Re can only be active when it has acted less than 2 · (2ne+1−ne − 1) many times.
Therefore, by the construction and the induction hypothesis, Re is only active at finitely many stages. It remains to show
that Re is met. Towards a contradiction, suppose that this is not the case. Then for some c.e. real γ ′

e (the one that follows
the least effort strategy with respect to α, β) throughout a subsequence si , i < k of the stages of the construction, the triple
(α, β, γ ′

e) follows a complete h-load process in Je . By Corollary 3.11, it follows that γ ′
e ≥ 2−ne · Sne+1 (ne+1 − ne) and by the

choice of Je we have γ ′
e > 1. Since the functionals *e , -e have use-function x + g(x), if γe ≠ γ ′

e then the approximations
to γe in the stages si , i < k can be seen as a suboptimal response to the changes of the bits of α, β in Je according to the
amplification games of Section 3.2.1. In particular, according to Lemma 3.2 and Lemma 3.3, we have γe[si] ≥ γ ′

e [si] for each
i < k. This means that γe > 1, which contradicts the fact that γe ∈ [0, 1]. We conclude that Re is satisfied.

4. Proof of Theorem 1.5

Recall the following theorem.

Theorem 1.5. Let a be a c.e. Turing degree and let ! be (an instance of) Chaitin’s halting probability.

(1) If a is array computable, then every real in a is computable from ! with identity use.
(2) Otherwise there exists a c.e. real in a which is not computable from ! with use n + log n.

1298 G. Barmpalias et al. / Journal of Computer and System Sciences 82 (2016) 1283–1299

Theorem 1.5 can be obtained directly by an application of the methods in [4, Sections 4.2 and 4.3] to the construction
in the proof of Theorem 1.2 (b). Since there are no new ideas involved in this application, and in the interest of space,
we merely sketch the argument. In [4, Section 4.2] it was shown that if α is in a c.e. array computable degree, then
it is computable from

∑
n g(n) · 2−n with identity use, where g = O (n) is a function with a nondecreasing computable

approximation. It is not hard to see that this implies that α is computable from ! with identity use, which is clause (1) of
Theorem 1.5.

In [4, Section 4.3] it was shown that if a is an array noncomputable c.e. degree, then there exist two c.e. reals in
such that no c.e. real can compute both of them with use n + O (1). This result was obtained by the application of array
noncomputable permitting to the construction in [23] (which obtained two c.e. reals with the above property). The same
can be done in entirely similar way to the construction in the proof of Theorem 1.2 (2), which is structurally similar to the
construction in [23]. This extension of our argument in Section 3.2 shows that the two c.e. reals of the second clause of
Theorem 1.2 (1) can be found in any array noncomputable c.e. degree. If we choose h(n) = n + log n in this theorem, we
obtain the second clause of Theorem 1.5.

5. Conclusion and a conjecture

Chaitin’s omega numbers are known to compute the solutions to many interesting problems, and to do so with access
only to a short initial segments of the oracle. Although ! contains the same information as the halting problem, this
information is much more tightly packed into short initial segments. Despite these well-known facts, little was known about
the number of bits of ! that are needed to compute halting probabilities or c.e. sets, and in particular the asymptotically
optimal use of the oracle in such computations.

In this work we provide answers to these questions, and expose various connections with current research in algorithmic
randomness. Moreover, our results point to several other open problems which appear to be an interesting direction of
research.

Barmpalias and Lewis-Pye [7] showed that there exists a c.e. real which is not computable from any omega number
with use n + O (1). Another proof of this result (which was used to obtain a characterisation of the degrees of the c.e. reals
with this property) was given in [4, Section 4.3]. We conjecture that this holds more generally in the spirit of this paper. In
particular, if g is a computable non-decreasing function such that

∑
i 2−g(i) = ∞, we conjecture that there exists a c.e. real

which is not computable by any omega number with use g(n) + n.

References

[1] Klaus Ambos-Spies, Decheng Ding, Yun Fan, Wolfgang Merkle, Maximal pairs of computably enumerable sets in the computably Lipschitz degrees,
Theory Comput. Syst. 52 (1) (January 2013) 2–27.

[2] George Barmpalias, Computably enumerable sets in the Solovay and the strong weak truth table degrees, in: S. Barry Cooper, Benedikt Löwe, Leen
Torenvliet (Eds.), CiE, in: Lecture Notes in Computer Science, vol. 3526, Springer, 2005, pp. 8–17.

[3] Laurent Bienvenu, Rod G. Downey, Kolmogorov complexity and Solovay functions, in: Susanne Albers, Jean-Yves Marion (Eds.), STACS, in: LIPIcs, vol. 3,
Schloss Dagstuhl – Leibniz-Zentrum fuer Informatik, Germany, 2009, pp. 147–158.

[4] George Barmpalias, Rodney Downey, Noam Greenberg, Working with strong reducibilities above totally ω-c.e. and array computable degrees, Trans.
Am. Math. Soc. 362 (2) (2010) 777–813.

[5] Charles H. Bennett, On random and hard-to-describe numbers, Technical report, IBM Watson Research Center Yorktown Heights, Heights, NY 10598,
USA, 3 May 1979.

[6] George Barmpalias, Rupert Hölzl, Andrew E.M. Lewis, Wolfgang Merkle, Analogues of Chaitin’s omega in the computably enumerable sets, Inf. Process.
Lett. 113 (5–6) (2013) 171–178.

[7] George Barmpalias, Andrew E.M. Lewis, A c.e. real that cannot be sw-computed by any omega number, Notre Dame J. Form. Log. 47 (2) (2006) 197–209.
[8] George Barmpalias, Andrew E.M. Lewis, The ibT degrees of computably enumerable sets are not dense, Ann. Pure Appl. Logic 141 (1–2) (2006) 51–60.
[9] George Barmpalias, Andrew E.M. Lewis, Random reals and Lipschitz continuity, Math. Struct. Comput. Sci. 16 (5) (2006) 737–749.

[10] George Barmpalias, Andrew E.M. Lewis, Randomness and the linear degrees of computability, Ann. Pure Appl. Logic 145 (3) (2007) 252–257.
[11] Laurent Bienvenu, Wolfgang Merkle, André Nies, Solovay functions and K-triviality, in: 28th Annual Symposium on Theoretical Aspects of Computer

Science (STACS 2011), Schloss Dagstuhl – LIPIcs 9, 2011, pp. 452–463.
[12] Cristian S. Calude, Michael J. Dinneen, Exact approximations of omega numbers. I, J. Bifurc. Chaos 17 (6) (2007) 1937–1954.
[13] Cristian S. Calude, Michael J. Dinneen, Chi-Kou Shu, Computing a glimpse of randomness, Exp. Math. 11 (3) (2002) 361–370.
[14] Gregory J. Chaitin, A theory of program size formally identical to information theory, J. Assoc. Comput. Mach. 22 (1975) 329–340.
[15] Gregory J. Chaitin, Incompleteness theorems for random reals, Adv. Appl. Math. 8 (1987) 119–146.
[16] Christian Calude, Peter Hertling, Bakhadyr Khoussainov, Yongge Wang, Recursively enumerable reals and Chaitin ! numbers, Theor. Comput. Sci.

255 (1–2) (2001) 125–149.
[17] Cristian Calude, André Nies, Chaitin omega numbers and strong reducibilities, J. Univers. Comput. Sci. 3 (11) (1997) 1162–1166.
[18] Adam R. Day, The computable Lipschitz degrees of computably enumerable sets are not dense, Ann. Pure Appl. Logic 161 (12) (2010) 1588–1602.
[19] Rod G. Downey, Denis Hirshfeldt, Algorithmic Randomness and Complexity, Springer, 2010.
[20] Rod G. Downey, Denis R. Hirschfeldt, Geoff LaForte, Randomness and reducibility, J. Comput. Syst. Sci. 68 (1) (2004) 96–114.
[21] Rod G. Downey, Denis Hirschfeldt, André Nies, Randomness, computability and density, SIAM J. Comput. 31 (2002) 1169–1183.
[22] Rod G. Downey, Carl G. Jockusch Jr., Michael Stob, Array nonrecursive sets and genericity, in: Computability, Enumerability, Unsolvability: Directions in

Recursion Theory, in: London Mathematical Society Lecture Notes Series, vol. 224, Cambridge University Press, 1996, pp. 93–104.
[23] Decheng Ding, Liang Yu, There is no sw-complete c.e. real, J. Symb. Log. 69 (4) (2004) 1163–1170.
[24] Santiago Figueira, Frank Stephan, Guohua Wu, Randomness and universal machines, J. Complex. 22 (6) (2006) 738–751.
[25] Martin Gardner, The random number omega bids fair to hold the mysteries of the universe, Sci. Am. 241 (1979) 20–34.
[26] Rupert Hölzl, Thorsten Kräling, Wolfgang Merkle, Time-bounded Kolmogorov complexity and Solovay functions, in: Mathematical Foundations of Com-

puter Science, 2009, in: Lecture Notes in Comput. Sci., vol. 5734, Springer, 2009, pp. 392–402.

http://refhub.elsevier.com/S0022-0000(16)30030-7/bib4D65726B6C656261726D70s1
http://refhub.elsevier.com/S0022-0000(16)30030-7/bib4D65726B6C656261726D70s1
http://refhub.elsevier.com/S0022-0000(16)30030-7/bib44424C503A636F6E662F6369652F4261726D70616C6961733035s1
http://refhub.elsevier.com/S0022-0000(16)30030-7/bib44424C503A636F6E662F6369652F4261726D70616C6961733035s1
http://refhub.elsevier.com/S0022-0000(16)30030-7/bib44424C503A636F6E662F73746163732F4269656E76656E75443039s1
http://refhub.elsevier.com/S0022-0000(16)30030-7/bib44424C503A636F6E662F73746163732F4269656E76656E75443039s1
http://refhub.elsevier.com/S0022-0000(16)30030-7/bib494F504F52542E3035363738343931s1
http://refhub.elsevier.com/S0022-0000(16)30030-7/bib494F504F52542E3035363738343931s1
http://refhub.elsevier.com/S0022-0000(16)30030-7/bib62656E6E6574747265616C3739s1
http://refhub.elsevier.com/S0022-0000(16)30030-7/bib62656E6E6574747265616C3739s1
http://refhub.elsevier.com/S0022-0000(16)30030-7/bib69706C2F4261726D70616C696173484C4D3133s1
http://refhub.elsevier.com/S0022-0000(16)30030-7/bib69706C2F4261726D70616C696173484C4D3133s1
http://refhub.elsevier.com/S0022-0000(16)30030-7/bib6A666C42616961734C3036s1
http://refhub.elsevier.com/S0022-0000(16)30030-7/bib424C696254s1
http://refhub.elsevier.com/S0022-0000(16)30030-7/bib424C30352E35s1
http://refhub.elsevier.com/S0022-0000(16)30030-7/bib4D5232323836343134s1
http://refhub.elsevier.com/S0022-0000(16)30030-7/bib4269656E76656E754D4E3131s1
http://refhub.elsevier.com/S0022-0000(16)30030-7/bib4269656E76656E754D4E3131s1
http://refhub.elsevier.com/S0022-0000(16)30030-7/bib696A62632F43616C756465443037s1
http://refhub.elsevier.com/S0022-0000(16)30030-7/bib43616C75646544533032s1
http://refhub.elsevier.com/S0022-0000(16)30030-7/bib4D5230343131383239s1
http://refhub.elsevier.com/S0022-0000(16)30030-7/bib6368616974696E696E636F6D70s1
http://refhub.elsevier.com/S0022-0000(16)30030-7/bib43616C7564652E486572746C696E672E65613A3031s1
http://refhub.elsevier.com/S0022-0000(16)30030-7/bib43616C7564652E486572746C696E672E65613A3031s1
http://refhub.elsevier.com/S0022-0000(16)30030-7/bib43616C7564654E3937s1
http://refhub.elsevier.com/S0022-0000(16)30030-7/bib6170616C2F4461793130s1
http://refhub.elsevier.com/S0022-0000(16)30030-7/bib726F64656E6973626F6F6Bs1
http://refhub.elsevier.com/S0022-0000(16)30030-7/bib4D5232303330353132s1
http://refhub.elsevier.com/S0022-0000(16)30030-7/bib44484Es1
http://refhub.elsevier.com/S0022-0000(16)30030-7/bib444A5332s1
http://refhub.elsevier.com/S0022-0000(16)30030-7/bib444A5332s1
http://refhub.elsevier.com/S0022-0000(16)30030-7/bib44696E67593034s1
http://refhub.elsevier.com/S0022-0000(16)30030-7/bib6A632F466967756569726153573036s1
http://refhub.elsevier.com/S0022-0000(16)30030-7/bib62656E6E65743739s1
http://refhub.elsevier.com/S0022-0000(16)30030-7/bib686F6C7A6C4D65726B4B72613039s1
http://refhub.elsevier.com/S0022-0000(16)30030-7/bib686F6C7A6C4D65726B4B72613039s1

G. Barmpalias et al. / Journal of Computer and System Sciences 82 (2016) 1283–1299 1299

[27] Andrey N. Kolmogorov, Three approaches to the definition of the concept “quantity of information”, Probl. Pereda. Inf. 1 (1) (1965) 3–11.
[28] Antonín Kučera, Theodore Slaman, Randomness and recursive enumerability, SIAM J. Comput. 31 (1) (2001) 199–211.
[29] Martin Kummer, Kolmogorov complexity and instance complexity of recursively enumerable sets, SIAM J. Comput. 25 (6) (1996) 1123–1143.
[30] Leonid A. Levin, Laws of information conservation (nongrowth) and aspects of the foundation of probability theory, Probl. Inf. Transm. 10 (1974)

206–210.
[31] Nadine Losert, Where join preservation fails in the bounded Turing degrees of C.E. sets, in: Theory and Applications of Models of Computation: 12th

Annual Conference, TAMC 2015, Singapore, May 18–20, 2015, Proceedings, 2015, pp. 38–49.
[32] Ming Li, Paul Vitányi, An Introduction to Kolmogorov Complexity and Its Applications, third edition, Graduate Texts in Computer Science., Springer-

Verlag, New York, 2008.
[33] Nancy Lynch, Approximations to the halting problem, J. Comput. Syst. Sci. 9 (2) (1974) 143–150.
[34] Per Martin-Löf, The definition of random sequences, Inf. Control 9 (1966) 602–619.
[35] André Nies, Computability and Randomness, Oxford University Press, 2009.
[36] Claus-Peter Schnorr, Optimal enumerations and optimal Gödel numberings, Math. Syst. Theory 8 (2) (1975) 182–191.
[37] Ray J. Solomonoff, A formal theory of inductive inference. I, Inf. Control 7 (1964) 1–22;

Ray J. Solomonoff, A formal theory of inductive inference. II, Inf. Control 7 (1964) 224–254.
[38] Robert M. Solovay, Handwritten Manuscript Related to Chaitin’s Work, IBM Thomas J. Watson Research Center, Yorktown Heights, NY, 1975, 215 pages.
[39] Robert M. Solovay, A version of ! for which ZFC can not predict a single bit, in: G. Pǎun, C.S. Calude (Eds.), Finite Versus Infinite. Contributions to an

Eternal Dilemma, Springer-Verlag, London, 2000, pp. 323–334.
[40] Kohtaro Tadaki, Chaitin ! numbers and halting problems, in: Proceedings of the 5th Conference on Computability in Europe: Mathematical Theory

and Computational Practice, CiE ’09, Springer-Verlag, Berlin, Heidelberg, 2009, pp. 447–456.
[41] Kohtaro Tadaki, A computational complexity-theoretic elaboration of weak truth-table reducibility, Technical report, Chuo University, Japan, Centre for

Discrete Mathematics and Theoretical Computer Science, July 2011.
[42] Kohtaro Tadaki, Robustness of statistical mechanical interpretation of algorithmic information theory, in: 2011 IEEE Information Theory Workshop, ITW

2011, Paraty, Brazil, October 16–20, 2011, IEEE, 2011, pp. 237–241.
[43] Kohtaro Tadaki, A statistical mechanical interpretation of algorithmic information theory III: composite systems and fixed points, Math. Struct. Comput.

Sci. 22 (5) (2012) 752–770.

http://refhub.elsevier.com/S0022-0000(16)30030-7/bib4D5230313834383031s1
http://refhub.elsevier.com/S0022-0000(16)30030-7/bib4B75636572612E536C616D616E3A3031s1
http://refhub.elsevier.com/S0022-0000(16)30030-7/bib44424C503A6A6F75726E616C732F7369616D636F6D702F4B756D6D65723936s1
http://refhub.elsevier.com/S0022-0000(16)30030-7/bib4C65763734747261s1
http://refhub.elsevier.com/S0022-0000(16)30030-7/bib4C65763734747261s1
http://refhub.elsevier.com/S0022-0000(16)30030-7/bib4C6F736572743135s1
http://refhub.elsevier.com/S0022-0000(16)30030-7/bib4C6F736572743135s1
http://refhub.elsevier.com/S0022-0000(16)30030-7/bib4D5231343338333037s1
http://refhub.elsevier.com/S0022-0000(16)30030-7/bib4D5231343338333037s1
http://refhub.elsevier.com/S0022-0000(16)30030-7/bib4C796E636831393734313433s1
http://refhub.elsevier.com/S0022-0000(16)30030-7/bib4D5230323233313739s1
http://refhub.elsevier.com/S0022-0000(16)30030-7/bib4F74746F626F6F6Bs1
http://refhub.elsevier.com/S0022-0000(16)30030-7/bib6D73742F5363686E6F72723735s1
http://refhub.elsevier.com/S0022-0000(16)30030-7/bib536F6C6F6D6F6E6F66663A3634s1
http://refhub.elsevier.com/S0022-0000(16)30030-7/bib536F6C6F6D6F6E6F66663A3634s2
http://refhub.elsevier.com/S0022-0000(16)30030-7/bib536F6C6F7661793A3735s1
http://refhub.elsevier.com/S0022-0000(16)30030-7/bib736F6C6F7661793030s1
http://refhub.elsevier.com/S0022-0000(16)30030-7/bib736F6C6F7661793030s1
http://refhub.elsevier.com/S0022-0000(16)30030-7/bib546164616B693A323030395F3732s1
http://refhub.elsevier.com/S0022-0000(16)30030-7/bib546164616B693A323030395F3732s1
http://refhub.elsevier.com/S0022-0000(16)30030-7/bib746164616B6932303131726570s1
http://refhub.elsevier.com/S0022-0000(16)30030-7/bib746164616B6932303131726570s1
http://refhub.elsevier.com/S0022-0000(16)30030-7/bib44424C503A636F6E662F6974772F546164616B693131s1
http://refhub.elsevier.com/S0022-0000(16)30030-7/bib44424C503A636F6E662F6974772F546164616B693131s1
http://refhub.elsevier.com/S0022-0000(16)30030-7/bib44424C503A6A6F75726E616C732F6D7363732F546164616B693132s1
http://refhub.elsevier.com/S0022-0000(16)30030-7/bib44424C503A6A6F75726E616C732F6D7363732F546164616B693132s1

	Optimal asymptotic bounds on the oracle use in computations from Chaitin's Omega
	1 Introduction
	1.1 Our main results, in context
	1.2 Omega numbers and completeness
	1.3 Preliminaries

	2 Omega and the computably enumerable sets
	2.1 Proof of Theorem 1.6, clauses (i) and (ii)
	2.2 Proof of Theorem 1.6, clauses (iii) and (iv)
	2.3 Proof of Theorem 1.3
	2.4 Proof of Theorem 1.4

	3 Computing c.e. reals from Omega numbers
	3.1 Proof of Theorem 1.2, clause (1)
	3.2 Proof of Theorem 1.2, clause (2)
	3.2.1 Ampliﬁcation games
	3.2.2 Generalised ampliﬁcation games
	3.2.3 Construction of the two reals and veriﬁcation
	Construction

	4 Proof of Theorem 1.5
	5 Conclusion and a conjecture
	References

